期刊文献+

基于CSO-AUKF的锂电池SOC估算方法 被引量:1

Lithium Battery SOC Estimation Method Based on CSO-AUKF
在线阅读 下载PDF
导出
摘要 电池荷电状态(SOC)估算是电池管理系统(BMS)的关键技术之一。针对锂电池提出了一种基于猫群(CSO)算法和自适应无迹卡尔曼滤波(AUKF)算法相结合的电池SOC估算方法;建立了基于二阶RC等效电路模型的锂电池状态方程,采用CSO算法提高电池辨识精度,联合AUKF算法对SOC进行估算;基于混合脉冲功率测试工况(HPPC)和间歇恒流放电工况下的数据对该方法有效性进行了验证。研究结果表明:基于CSO-AUKF估算,SOC最大误差小于1.64%,估算精度及稳定性均好于遗传算法。 Battery state of charge(SOC)estimation is one of the key technologies of battery management system(BMS).A battery SOC estimation method based on the combination of cat swarm optimization(CSO)algorithm and adaptive unscented Kalman filtering(AUKF)algorithm was proposed for lithium-ion batteries.The state equation of lithium battery based on the second-order RC equivalent circuit model was established,and the CSO algorithm was used to improve the identification accuracy of battery.The AUKF algorithm was combined to estimate the SOC.Based on the data of hybrid pulse power characterization test(HPPC)condition and intermittent constant current discharge condition,the effectiveness of the proposed method was verified.The results show that based on CSO-AUKF estimation,the maximum error of SOC is less than 1.64%,and the estimation accuracy and stability are both better than those of the genetic algorithm.
作者 吴华伟 洪强 陈运星 马毓博 WU Huawei;HONG Qiang;CHEN Yunxing;MA Yubo(Hubei Longzhong Laboratory,Hubei University of Arts and Sciences,Xiangyang 441053,Hubei,China;Hubei Key Laboratory of Pure Electric Vehicle Power System Design and Testing,Hubei University of Arts and Sciences,Xiangyang 441053,Hubei,China)
出处 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第9期118-126,共9页 Journal of Chongqing Jiaotong University(Natural Science)
基金 襄阳市科技计划湖北隆中实验室专项项目(2023AAA001) “新能汽车与智慧交通”湖北省优势特色学科群开放基金项目(XKQ2022008)。
关键词 车辆工程 锂电池汽车 荷电状态(SOC) 猫群(CSO)算法 自适应无迹卡尔曼滤波(AUKF)算法 vehicle engineering lithium battery vehicles state of charge(SOC) cat swarm optimization(CSO)algorithm adaptive unscented Kalman filtering(AUKF)algorithm
  • 相关文献

参考文献18

二级参考文献152

  • 1李昂,付敬奇,沈华明,孙泗洲.基于模糊聚类和猫群算法的室内定位算法[J].仪器仪表学报,2020,41(1):185-194. 被引量:21
  • 2刘征宇,朱诚诚,尤勇,姚利阳.面向SOC估计的计及温度和循环次数的锂离子电池组合模型[J].仪器仪表学报,2019,40(11):117-127. 被引量:19
  • 3邱望彦,李荣冰,刘建业.基于改进自适应渐消卡尔曼滤波的通用航空GNSS/微惯性组合导航算法研究[J].电子测量技术,2020(10):95-100. 被引量:10
  • 4Wei H, Cong J, Xue L Y, et al. Extracting solar cell model parameters based on chaos particle swarm algorithm [ C ]// International Conference on Electric Information and Control Engineering. 2011:398 - 402.
  • 5A1Rashidi M R, A1Hajri M F, E1-Naggar K M, et al. A new estimation approach for determining the I-V ch-aracteristics of solar cells [ J ]. Solar Energy,2011,85 (7) : 1543 - 1550.
  • 6E1-Naggar K M,A1Rashidi M R,A1Hajri M F,et al. Simula- ted annealing algorithm for photovohaic param-eters identifi- cation [ J ]. Solar Energy,2012,86 ( 1 ) :266 - 274.
  • 7A1Hajri M F, E1-Naggar K M, A1Rashidi M R, et al. Optimal extraction of solar cell parameters using pattern search [ J ]. Renewable Energy ,2012,44:238 - 245.
  • 8Dai C H, Chen W K,Zhu Y F. Seeker optimization algorithm for digital IIR filter design[ J], IEEE Transactions Industrial Electronics ,2010,57 (5) : 1710 - 1718.
  • 9Askarzadeh A, Rezazadeh A. Artificial bee swarm optimiza- tion algorithm for parameters identification of solar cell mod- els[ J]. Applied Energy ,2013,102:943 - 949.
  • 10Orioli A, Gangi A D. A procedure to calculate the five-par- ameter model of crystalline silicon photovohaic modules on the basis of the tabular performance data[ J]. Applied Energy 2013,102 : 1160 - 1177.

共引文献132

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部