期刊文献+

Synthesis and modification of nanowires anchored on electrodes for electrochemical and electrophysical applications

原文传递
导出
摘要 The integration of nanowires onto electrode surfaces marks a significant advancement over traditional electrode materials,conferring upon nanowire-modified electrodes a vast array of applications within electrochemical and electrophysical domains.The nanowires used for electrode modification can be catalogized into two distinct types:anchored nanowires and free-standing nanowires.A critical advantage of anchored nanowires lies in their enhanced electrical connectivity with the substrate,which reduces electrode resistance and facilitates charge transport.Furthermore,the anchorage of nanowires onto electrodes provides additional mechanical support,bolstering the structural stability of the nanowire assembly.Here,we review the development of anchored nanowires designed for applications in energy storage,electrocatalysis,and electric field treatment(EFT)over the past decade.We focus on the synthesis and modification strategies employed for anchored nanowires,culminating in the evaluation of these fabrication and enhancement techniques.Through this analysis,we aim to furnish comprehensive insights into the preparation of anchored nanowires,guiding the selection of appropriate fabrication processes and subsequent functional modifications.
出处 《Nano Research》 SCIE EI CSCD 2024年第10期8863-8884,共22页 纳米研究(英文版)
基金 the National Science Foundation via Grant CBET 2203162.
  • 相关文献

参考文献9

二级参考文献59

  • 1Tomioka, K.; Yoshimura, M.; Fukui, T. A III-V nanowire channel on silicon for high-performance vertical transistors. Nature 2012, 488, 189 192.
  • 2Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D. C.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617 620.
  • 3Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; ,berg, I.; Magnusson, M. H.; Siefer, G.; Fuss-Kailuweit, P.; Dirnroth, F.; Witzigmann, B. et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 2013, 339, 1057-1060.
  • 4LaPierre, R. R.; Chia, A. C. E.; Gibson, S. J.; Haapamaki, C. M.; Boulanger, J.; Yee, R.; Kuyanov, P.; Zhang, J.; Tajik, N.; Jewell, N. et al. III-V nanowire photovoltaics: Review of design for high efficiency. Phys. Status Solidi-RRL 2013, 7, 815-830.
  • 5Polman, A.; Atwater, H. A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nat. Mater. 2012, 11, 174-177.
  • 6Anttu, N.; Abrand, A.; Asoli, D.; Heurlin, M.; /berg, I.; Samuelson, L.; Borgstr6m, M. Absorption of light in InP nanowire arrays. Nano Res. 2014, 7, 816-823.
  • 7Chen, M. Y.; Nakai, E.; Tomioka, K.; Fukui, T. Application of free-standing InP nanowire arrays and their optical properties for resource-saving solar cells. Appl. Phys. Express 2015, 8, 012301.
  • 8Hu, L.; Chen, G. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 2007, 7, 3249-3252.
  • 9Kupec, J.; Stoop, R. L.; Witzigmann, B. Light absorption and emission in nanowire array solar cells. Opt. Express 2010, 18, 27589 27605.
  • 10Anttu, N.; Xu, H. Q. Coupling of light into nanowire arrays and subsequent absorption. J. Nanosci. Nanotechno. 2010, 10, 7183-7187.

共引文献413

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部