期刊文献+

Nb含量对多孔Ti-Nb合金组织与力学性能的影响

Effect of Nb content on microstructure and mechanical properties of porous Ti-Nb alloys
在线阅读 下载PDF
导出
摘要 利用真空烧结技术制备获得不同含量Nb元素的多孔Ti-Nb合金,研究Nb元素含量对多孔Ti-Nb合金孔隙形貌、孔隙率、显微组织、弹性模量以及耐磨损性能的影响。结果表明:随着Nb元素含量的增加,多孔Ti-Nb合金的孔隙形貌无明显变化,其孔隙率逐渐增加。多孔Ti-Nb合金主要由α相和β相组成,其中,由于Nb元素中β相稳定作用,随着Nb元素含量的增加,合金中β相的体积分数显著增加,合金的抗压强度和弹性模量逐渐降低。多孔Ti-Nb合金在模拟体液(SBF)中的耐磨性主要受合金中β相和α相体积比的影响,当β相和α相体积比超过61.7/38.3时,合金的耐磨性逐渐提高。 Porous Ti-Nb alloys with different contents of Nb elements were prepared by vacuum sintering technology.The effects of Nb element contents on pore morphologies,porosities,microstructures,elastic modulus,and wear resistances of porous Ti-Nb alloys were investigated.The results show that with the ascent of Nb element contents,the pore morphology of porous Ti-Nb alloys does not change significantly,and the porosities increase gradually.The porous Ti-Nb alloys are mainly composed ofα-p h a s e a n dβ-phase,in which,due to theβ-phase stabilizing effect of Nb elements,the volume fraction of theβ-phase in the alloys increases significantly with the increase of the Nb element content,and the compressive strength and elastic modulus of the alloys decrease gradually.The wear resistance of porous Ti-Nb alloys in simulated body fluid(SBF)is mainly related to the volume ratio ofβ-phase toα-phase.When the volume ratio ofβ-phase toα-phase exceeds 61.7/38.3,the wear resistance of the alloy gradually improves.
作者 苏苏 李明骜 刘俊逸 李娟 高宇 康文武 SU Su;LI Ming’ao;LIU Junyi;LI Juan;GAO Yu;KANG Wenwu(College of Materials Science and Engineering,Chongqing University of Technology,Chongqing 400054,China)
出处 《材料工程》 EI CAS CSCD 北大核心 2024年第9期141-149,共9页 Journal of Materials Engineering
基金 重庆市教委科学技术研究项目(KJQN202101138,KJQN202201143) 2022年度重庆博士后研究项目特别资助项目(2022CQBSHTB2026) 重庆市研究生科研创新项目(CYS23646)。
关键词 多孔Ti-Nb合金 组织演化 弹性模量 摩擦磨损性能 porous Ti-Nb alloy microstructure evolution elastic modulus friction and wear property
  • 相关文献

参考文献4

二级参考文献50

  • 1刘理,刘军.钒:一种具有非典型生物学意义的元素[J].国外医学(医学地理分册),2006,27(3):114-116. 被引量:4
  • 2M. Niinomi, Biomaterials 24 (2003) 2673-2683.
  • 3M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater. Sci. 54 (2009) 397-425.
  • 4J.I. Qazi, B. Marquardt, LF. Allard, H.J. Rack, Mater. Sci. Eng. C 25 (2005) 389-397.
  • 5S.E. Haghighi, H.B. Lu, G.Y. Jian, G.H. Cao, D. Habibi, L.C. Zhang, Mater. Design 76 (2015) 47-54.
  • 6Y.L. Hao, S.J. Li, 8.Y. Sun, C.Y. Zheng, Q.M. Hu, R. Yang, Appl. Phys. Lett. 87 (2005) 091906.
  • 7Y.L. Hao, 8.J. Li, S.Y. Sun, C.Y. Zheng, R. Yang, Acta 8iomater. 3 (2007) 277-286.
  • 8S.J. Li, T.C. Cui, Y.L. Hao, R. Yang, Acta Biomater. 4 (2008) 305-317.
  • 9X.Y. Cheng, S.J. Li, L.E. Mum Z.B. Zhang, Y.L. Hao, R. Yang, E Medina, R.B. Wicker, Mech. Behav. Biomed. Mater. 16 (2012) 153-162.
  • 10G. Ryan, A. Pandit, D.P. Apatsidis, Biomaterials 27 (2006) 2651-2670.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部