摘要
以典型B2相增韧非晶复合材料形成合金Zr_(48)Cu_(48)Al_(4)为基础,分别研究了Ti、Nb微合金化添加对其凝固组织和性能的影响规律。研究发现,与基础合金相比,微合金化显著改变了B2相的组织形貌(包括大小、数量、形状),其中Ti微合金化降低了B2晶体相的形核能力,提高了非晶和非晶复合材料的形成能力;而Nb微合金化则提高了B2相的稳定性,并大幅提高了非晶相与B2相的硬度以及非晶复合材料的强度和压缩塑性(分别达到了1470 MPa和21.5%)。本研究为非晶复合材料的成分设计与制备提供了实验依据,对开发高性能相变增韧非晶复合材料具有参考价值。
Based on Zr_(48)Cu_(48)Al_(4),a typical TRIP(phase transformation-induced plasticity)-ductilized bulk metallic glass composite(BMGC)-forming alloy,the effects of microalloying of Ti or Nb on its solidification microstructure and properties have been investigated.It is found that compared with the base alloy,microalloying significantly changes the microstructure of the reinforcing B2 phase which is embedded in the glass matrix and leads to the TRIP effect upon loading.In particular,Ti microalloying reduces the driving force for B2-nucleation,and improves the alloy′s glass forming ability and BMGC-forming range.On the other hand,Nb microalloying stabilizes the B2 phase,and significantly increases the hardness of the glass and the B2 phase,as well as the strength and compressive plasticity of bulk metallic glass composite(up to 1470 MPa and 21.5%,respectively).This study has implications for the development of high-performance TRIP-ductilized bulk metallic glass composites.
作者
赵燕春
姚文博
董杰
吕志超
黄燕
张艺波
马东
杨铭
ZHAO Yanchun;YAO Wenbo;DONG Jie;L Zhichao;HUANG Yan;ZHANG Yibo;MA Dong;YANG Ming(State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals,Lanzhou University of Technology,Lanzhou 730050,China;Neutron Science Center,Songshan Lake Materials Laboratory,Dongguan 523808,China;National Key Laboratory for Metrology and Calibration Techniques,China Institute of Atomic Energy,Beijing 102413,China)
出处
《有色金属工程》
CAS
北大核心
2024年第10期25-30,共6页
Nonferrous Metals Engineering
基金
国家自然科学基金资助项目(52130108,52101200,52061027)
广东省自然科学基金项目(2021CX02C087)
新金属材料国家重点实验室开放课题(2022-ZD01)
甘肃省重点研发计划(22YF7GA155)
兰州市青年科技人才创新项目(2023-QN-91)
浙江省自然科学基金项目(LY23E010002)。
关键词
非晶复合材料
微合金化
非晶形成能力
相变诱导塑性
bulk metallic glass composites
microalloying
glass-forming ability
phase transformation-induced plasticity