期刊文献+

GLOBAL CONVERGENCE OF A CAUTIOUS PROJECTION BFGS ALGORITHM FOR NONCONVEX PROBLEMS WITHOUT GRADIENT LIPSCHITZ CONTINUITY

在线阅读 下载PDF
导出
摘要 A cautious projection BFGS method is proposed for solving nonconvex unconstrained optimization problems.The global convergence of this method as well as a stronger general convergence result can be proven without a gradient Lipschitz continuity assumption,which is more in line with the actual problems than the existing modified BFGS methods and the traditional BFGS method.Under some additional conditions,the method presented has a superlinear convergence rate,which can be regarded as an extension and supplement of BFGS-type methods with the projection technique.Finally,the effectiveness and application prospects of the proposed method are verified by numerical experiments.
作者 Gonglin YUAN Xiong ZHAO Jiajia YU 袁功林;赵雄;余家佳(School of Mathematics and Information Science,Center for Applied Mathematics of Guangxi(Guangxi University),Guangxi University,Nanning,530004,China)
出处 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1735-1746,共12页 数学物理学报(B辑英文版)
基金 supported by the Guangxi Science and Technology base and Talent Project(AD22080047) the National Natural Science Foundation of Guangxi Province(2023GXNFSBA 026063) the Innovation Funds of Chinese University(2021BCF03001) the special foundation for Guangxi Ba Gui Scholars.
  • 相关文献

参考文献2

二级参考文献26

  • 1李改弟.一个自动确定信赖域半径的信赖域方法[J].工程数学学报,2006,23(5):843-848. 被引量:28
  • 2Burmenei, A., Bratkovic, F., Puhan, J., Fajfar, I., Tuma, T.: Extended global convergence framework for unconstrained optimization. Acta Mathematica Sinca, English Series, 20(3), 433-440 (2004)
  • 3Han, J. Y., Liu, G. H.: Global convergence analysis of a new nonmonotone BFGS algorithm on convex objective Functions. Computational Optimization and Applications, 7, 277-289 (1997).
  • 4Griewank, A., Toint, Ph. L.: Local convergence analysis for partitioned quasi-Newton updates. Numer. Math., 39, 429-448 (1982)
  • 5Broyden, C. G., Dennis, J. E., More, J. J.: On the local and supelinear convergence of quasi-Newton methods. J. Inst. Math. Appl., 12, 223-246 (1973)
  • 6Byrd, R., Nocedal, J., Yuan, Y.: Global convergence of a class of quasi-Newton methods on convex problems. SIAM Journal on Numerical Analysis, 24, 1171-1189 (1987)
  • 7Powell, M. J. D.: Some properties of the variable metric algorithm, In F. A. Lootsma, (ed.), Numerical Methods for Nonlinear Optimization, Academia Press, London, 1972
  • 8Powell, M. J. D.: Some global convergence properties of a variable Metric algorithm for minimization without exact linesearches, In Nonlinear Programming, SIAM-AMS Proceedings, R. W. Cottle and C. E. Lemke(eds.), Vol. Ⅸ., American Mathematrical Society, Providence, RI, 1976
  • 9Byrd, R., Nocedal, J.: A tool for the analysis of quasi-Newton methods with application to unconstrained minimization. SIAM Journal on Numerical Analysis, 26, 727-739 (1989)
  • 10Powell, M. J. D.: On the Convergence of the variable metric agorithm. J. of the Institute of Mathematics and its Applications, 7, 21-36 (1971)

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部