期刊文献+

p型PbSe热电材料研究进展:从中温区发电到近室温制冷

Research progress in p-type PbSe thermoelectric materials:from mediumtemperature power generation to near-room-temperature cooling
在线阅读 下载PDF
导出
摘要 热电材料能够实现电能和热能高效且清洁的相互转化,在余热回收和电子制冷方面具有重要的应用前景。碲化铅(PbTe)材料已经应用于深空探测领域的温差发电电源,硒化铅(PbSe)材料作为PbTe的同族类似物,有望作为其更为储量丰富、价格低廉的替代品,在中温区温差发电中展现出重要应用前景。近年来,对无Te热电冷却材料和器件需求不断增长,PbSe的研究方向逐渐从中温区发电转向近室温制冷。本文回顾了p型PbSe材料研究进程中所采用的典型优化策略,概述了基于该材料的热电发电和制冷器件的关键研究进展,展示了这一材料重要的发展前景。最后,对未来如何实现p型PbSe材料近室温热电性能的充分开发以及高性能热电制冷器件的制造进行了总结展望,包括整合各种优化策略,优化器件组装技术,确定合适的接触材料,以及开发基于PbSe的无Te热电器件,以推进其在深空探测、激光制冷等关键领域的实际应用。 Thermoelectric materials can efficiently and cleanly convert between electrical and thermal energy,offering significant prospects in waste heat recovery and electronic cooling applications.Lead telluride(PbTe)materials were used in thermoelectric power sources for deep space exploration.Lead selenide(PbSe),a homologue of PbTe,shows potential as a more abundant and cost-effective alternative for mid-temperature thermoelectric power generation.Recently,research in PbSe thermoelectric has shifted from mid-temperature power generation to near-room-temperature cooling,driven by the growing demand for Te-free thermoelectric cooling materials and devices.This paper reviewed the typical optimization strategies used in the research of p-type PbSe,summarized the key research progress in thermoelectric devices based on this material,and highlighted its significant development prospects.Finally,we provide a personal outlook on developing the near-room-temperature thermoelectric performance of p-type PbSe materials and manufacturing high-performance cooling devices,which includes integrating various optimization strategies,optimizing device assembly techniques,identifying suitable contact materials,and developing Te-free thermoelectric devices based on PbSe,with the goal of advancing their application in critical fields such as deep space exploration and laser cooling.
作者 刘世博 邱玉婷 秦炳超 赵立东 LIU Shibo;QIU Yuting;QIN Bingchao;ZHAO Lidong(School of Materials Science and Engineering,Beihang University,Beijing 100191,China;Beihang School,Beihang University,Beijing 100191,China;Tianmushan Laboratory,Hangzhou 311115,China)
出处 《航空材料学报》 CAS CSCD 北大核心 2024年第5期117-128,共12页 Journal of Aeronautical Materials
基金 国家重点研发计划项目(2021YFB3201100) 国家杰出青年科学基金项目(51925101) 国家自然科学基金项目(52450001) 北京市杰出青年科学基金项目(JQ18004) 高等学校学科创新引智计划(B17002) 博士后创新人才支持计划(BX20230456) 中国博士后科学基金面上项目(2024M754057)。
关键词 热电材料 p型PbSe 热电器件 载流子迁移率 热电优值 thermoelectric material p-type PbSe thermoelectric module carrier mobility thermoelectric figure of merit
  • 相关文献

参考文献12

二级参考文献94

  • 1孔维悦,林紫威,李鑫,黄琪,朱雷.材料基因组技术在集成电路材料研究中的应用进展[J].功能材料与器件学报,2022(4):356-370. 被引量:1
  • 2刘向阳,任山,闻立时.微型热电器件研究进展[J].材料导报,2007,21(3):5-9. 被引量:4
  • 3郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2007.
  • 4Baba S,Sato H,Huang L,et al.Formation and characterization of polyethylene terephthalate-based (Bi0.15 Sb0.85)2Te3 thermoelectric modules with CoSb3 adhesion layer by aerosol deposition[J].Journal of Alloys and Compounds,2014,589:56-60.
  • 5Itoigawa K,Ueno H,Shiozaki M,et al.Fabrication of flexible thermopile generator[J].Journal of Micromechanics and Microengineering,2005,15(9):S233-S238.
  • 6高敏,张景韶.温差电转换及其应用[M].北京:兵器工业出版社,1996:292-293.
  • 7Francioso L,De Pascali C,Siciliano P,et al.Thin film technology flexible thermoelectric generator and dedicated ASIC for energy harvesting applications[C]//2013 5th IEEE International Workshop on Advance in Sensors and Interfaces,2013:104-107.
  • 8Zhao W Y,Fan S F,Xiao N,et al.Flexible carbon nanotube papers with improved thermoelectric properties[J].Energy & Environmental Science,2012,5 (1):5364-5369.
  • 9Zhang G Q,Yu Q X,Wang W,et al.Nanostructures for thermoelectric applications:synthesis,growth mechanism,and property studies[J].Advanced Materials,2010,22(17):1959-1962.
  • 10Hsiao C C,Wu Y S.Fabrication of flexible thin-film thermoelectric generators[J].Journal of the Chinese Institute of Engineers,2011,34(6):809-816.

共引文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部