期刊文献+

盲语音去混响研究综述

A Review of Blind Speech Dereverberation Research
在线阅读 下载PDF
导出
摘要 盲语音去混响作为语音信号处理领域的一个重要研究问题,在通信、人机交互、人工智能、生物医学工程和消费电子等多个领域具有广泛应用。根据声源是否已知,盲语音去混响主要分为两种方法:在声源未知的情况下对接收信号进行盲解卷积,或在已知声源的情况下对声源信号进行盲预补偿。本文在详细梳理该领域发展历程与研究成果的基础上,对这项技术的应用前景、主要研究方法、研究成果以及存在的问题进行了深入分析和论述,为该领域的进一步深入研究打下基础。 Blind speech dereverberation,as a crucial research topic in the field of speech signal processing,has widespread applications in various domains including communication,human-computer interaction,artificial intelligence,biomedical engineering,and consumer electronics.Based on whether the sound source is known,blind speech dereverberation primarily employs two approaches:blind deconvolution of the received signal when the source is unknown,or blind pre-compensation of the source signal when it is known.This paper provides a comprehensive review of the development and research achievements in this field,offering an in-depth analysis and discussion of the technology's application prospects,main research methods,significant findings,and existing challenges.By doing so,it lays a foundation for further in-depth research in this area.
作者 曲万春 梅铁民 QU Wanchun;MEI Tiemin(School of Automation and Electrical Engineering,Shenyang Ligong University,Shenyang 110159,China)
出处 《微处理机》 2024年第5期1-6,12,共7页 Microprocessors
关键词 盲去混响 盲SIMO系统辨识 卡尔曼滤波 语音信号 Blind dereverberation Blind SIMO identification Kalman filter Speech signal
  • 相关文献

参考文献8

二级参考文献57

  • 1吴佳栋,陈光冶.语音信号去混响原理与技术[J].电声技术,2006,30(5):63-67. 被引量:9
  • 2阎兆立,杜利民.改进的后滤波波束形成器语音增强算法[J].电子与信息学报,2006,28(12):2269-2272. 被引量:4
  • 3T. Nishiura, R. Gruhn, S. Nakamura. Collaborative steering of microphone array and video camera toward multi-lingual tele-conference through speech-to-speech translation. IEEE Workshop on Automatic Speech Recognition and Understanding, Trento, Italy,2001 : 119-122.
  • 4J. Meyer and K. U. Simmer. Multi-channel speech enhancement in a car environment using wiener filtering and spectral subtraction, IEEE Transactions on Acoustics, Speech, and Signal Processing, 1997,21 (2) : 1167-1170.
  • 5B. Widrow, F. L. Lou. Microphone array for hearing aids : an overview, Speech Communication, 2003,39 ( 1-2 ) : 139- 146.
  • 6Liyan Zhang, Fuliang Yin and Daiwen Hou. SVD-based beamforming speech enhancement algorithm, Proc. of the International Conference on Electronic Measurement & Instruments ( ICEMI' 2005 ), Beijing, China, Aug. 2005:493- 497.
  • 7Q. G. Liu, B. Champagne, P. Kabal. Room speech dereverberation via minimum-phase and all-pass component processing of multi-microphone signals. IEEE Pacific Rim Conference on Communications, Computers, and Signal Processing, Victoria, Canada, 1995:571-574.
  • 8H. Osamu, S. Akihiko and H. Akihiro. A robust adaptive beamformer for microphone arrays with a blocking matrix using constrained adaptive filters. IEEE Transactions on Signal Processing, 1999, (47) 10:2677-2684.
  • 9R. Zelinski. A microphone array with adaptive post-filtering for noise reduction in reverberant rooms. IEEE Int. Conference on Acoustics, Speech and Signal Processing, 1988, (5) :2578-2581.
  • 10L. Kinsler, A. Frey, A. Coppens, and J. Sanders. Fundamentals of Acoustics. Third Edition, New York:John Wiley & Sons, 1982 : 104-131.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部