摘要
为了解决AlGaN基深紫外(DUV)发光二极管(LED)中的严重电子溢出和低空穴注入的问题,本文提出了一种新型锥形超晶格p-AlInGaN层,它大幅改善了基于AlGaN的DUV LED的光电特性.与传统结构相比,所提出结构的输出功率提高了337.8%;同时它的内部量子效率(IQE)也高达96%,并且没有效率下降现象.仿真计算结果表明,锥形超晶格p-AlInGaN层的引入明显增加了多量子阱(MQWs)内载流子的浓度并降低了量子阱(QWs)内的电场,导致了更高的辐射复合率,为改善DUV LED的性能提供了一个有吸引力的解决方案.
To address the drawbacks of severe electron spillover and low hole injection in AlGaN-based deep ultraviolet(DUV)light-emitting diodes(LEDs),we report a noveltapered superlattice p-AlInGaN layer which improves the optoelectronic properties of AlGaN-based DUV LEDs.The output power of the proposed structure is significantly improved by 337.8% compared to the conventional structure;it also has an internal quantum efficiency(IQE)of up to 96 %with no efficiency droop.The simulation calculation results show that the introduction of tapered superlattice p-AlInGaN layer increases the concentration of carriers within the multiple quantum wells(MQWs)and reduces the electric field,leading to a higher radiative recombination rate and providing an attractive solution for improving the performance of DUV LEDs.
作者
许愿
张傲翔
张鹏飞
王芳
刘俊杰
刘玉怀
XU Yuan;ZHANG Ao-Xiang;ZHANG Peng-Fei;WANG Fang;LIU Jun-Jie;LIU Yu-Huai(National Center for International Joint Research of Electronic Materials and Systems,International Joint-Laboratory of Electronic Materials and Systems of Henan Province,School of Electrical and Information Engineering,Zhengzhou University,Zhengzhou 450001,China;Institute of Intelligence Sensing,Zhengzhou University,Zhengzhou 450001,China;Research Institute of Industrial Technology Co.Ltd.,Zhengzhou University,Zhengzhou 450001,China;Zhengzhou Way Do Electronics Co.Ltd.,Zhengzhou 450001,China;School of Electrical and Information Engineering,North Minzu University,Yinchuan 750001,China)
出处
《原子与分子物理学报》
CAS
北大核心
2025年第1期101-107,共7页
Journal of Atomic and Molecular Physics
基金
国家自然科学基金(62174148)
国家重点研发计划(2022YFE0112000,2016YFE0118400)
河南省国际科技合作重点项目(231111520300)
宁波市“科技创新2025”重大专项(2019B10129)
智汇郑州·1125聚才计划(ZZ2018-45)。
关键词
深紫外发光二极管
ALINGAN
锥形超晶格
内部量子效率
辐射复合
Deep-ultraviolet light-emitting diodes
AlInGaN
Tapered superlattice
Internal quantum efficiency
Radiative recombination