期刊文献+

基于稳健估计的稀疏网格积分滤波算法及其在捷联惯导系统对准中的应用

Sparse-grid quadrature filter based on robust estimation and its application to SINS alignment
在线阅读 下载PDF
导出
摘要 为有效解决捷联惯性导航系统对准过程中异常量测对状态估计精度的影响,该文提出一种基于稳健估计的稀疏网格积分滤波算法(RESGQF)。该文给出了精度为3级的稀疏网格采样点规则,引入稳健估计算法,构建针对对准系统各状态分量偏差的权重函数。基于稀疏网格积分滤波(SGQF)算法框架,利用权重矩阵实时对量测噪声进行更新,从而降低异常量测对系统状态的影响。通过模拟飞行器动机座空中对准过程,对比在复杂噪声环境下不同滤波方法的性能,证明所提算法提升了系统鲁棒性。 To effectively address the impact of abnormal measurements on the accuracy of state estimation during the alignment process of the strapdown inertial navigation system(SINS),this paper proposes an improved sparse-grid quadrature filter algorithm based on robust estimation(RESGQF).In this paper,a sparse-grid sampling point rule with accuracy of level-3 is given,and the robust estimation algorithm is introduced to construct a weight function for the deviation of each state component of the SINS alignment system.Based on the sparse-grid quadrature filter(SGQF)algorithm framework,the measurement noise is updated in real time by using the weight matrix,thereby reducing the impact of measurement outliers on system statement.By simulating the air alignment of the aircraft moving base,the performance of different filter methods under complex noise environments is compared,and it is verified that the proposed algorithm improves the robustness of the system.
作者 钱晨 高阳 陈庆伟 郭健 Qian Chen;Gao Yang;Chen Qingwei;Guo Jian(School of Automation,Nanjing University of Science and Technology,Nanjing 210094,China)
出处 《南京理工大学学报》 CAS CSCD 北大核心 2024年第5期568-577,共10页 Journal of Nanjing University of Science and Technology
基金 中国博士后科学基金(2023M741717) 江苏省卓越博士后计划(2023ZB660) 国防基础科研计划(JCKY2021606B002) 国家自然科学基金(62203222) 中央高校基本科研业务费专项资金(30922010407)。
关键词 稳健估计 稀疏网格积分滤波器 离群值 初始对准 鲁棒性 robust estimation sparse-grid quadrature filter outlier initial alignment robustness
  • 相关文献

参考文献5

二级参考文献59

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:231
  • 2Lerro D, Bar-Shaom Y K. Tracking with debiased consistent convetted measurements vs. EKF [ J ]. IEEE Transaction on Aerospace and Electron System, 1993, AES-29:1015 -1022.
  • 3Julier S J, Uhhnann J K. Unscented filtering and nonlinear esti- mation[ C]. The American Control Conference. Boston, 2004, 92 ( 3 ) :401 - 422.
  • 4Zhao L, Wang X X. An adaptive UKF with noise statistic estlmator[ C]. 4th IEEE Conference on Industrial Electronics and Applications, Xi' an, 2009:614 - 618.
  • 5Kwang-Hoon K. The stability analysis of the adaptive fading extended kalman filter using the innovation covariance[ J]. International Journal of Control, Automation, and Systems, 2009, 7(1).
  • 6Julier S J. The scaled unscented transformation[ C ]. The American Control Conference. Anchorage, Ak, 2002:4555 - 4559.
  • 7Xiong K, Liu L D, Zhang H Y. Modified unscented kalman filtering and its application in autonomous satellite navigation [ J]. Aerospace Science and Technology, 2009, 13:238 -246.
  • 8Bernardo J M, Smith A F M. Bayesian Theory. Berlin: Springer-Verlag, 1994. 339-353.
  • 9Budhiraja A, Chen L J, Lee C H. A survey of numerical methods for nonlinear filtering problems. Physica D: Nonlinear Phenomena, 2007, 230(1): 27-36.
  • 10Nie P Y, Fan J Y. A derivative-free filter method for solving nonlinear complementarilty problems. Applied Mathematics and Computation, 2005, 161(3): 787-797.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部