期刊文献+

Ensemble Learning for Stellar Classification and Radius Estimation from Multimodal Data

在线阅读 下载PDF
导出
摘要 Stellar classification and radius estimation are crucial for understanding the structure of the Universe and stella evolution.With the advent of the era of astronomical big data,multimodal data are available and theoretically effective for stellar classification and radius estimation.A problem is how to improve the performance of this task by jointly using the multimodal data.However,existing research primarily focuses on using single-modal data.To this end,this paper proposes a model,Multi-Modal SCNet,and its ensemble model Multimodal Ensemble fo Stellar Classification and Regression(MESCR)for improving stellar classification and radius estimation performance by fusing two modality data.In this problem,a typical phenomenon is that the sample numbers o some types of stars are evidently more than others.This imbalance has negative effects on model performance Therefore,this work utilizes a weighted sampling strategy to deal with the imbalance issues in MESCR.Som evaluation experiments are conducted on a test set for MESCR and the classification accuracy is 96.1%,and th radius estimation performance Mean of Absolute Error andσare 0.084 dex and 0.149 R_(⊙),respectively.Moreover we assessed the uncertainty of model predictions,confirming good consistency within a reasonable deviation range.Finally,we applied our model to 50,871,534 SDSS stars without spectra and published a new catalog.
出处 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第11期211-224,共14页 天文和天体物理学研究(英文版)
基金 supported by the National Natural Science Foundation of China(12261141689,12273075,and 12373108) the National Key R&D Program of China No.2019YFA0405502 the science research grants from the China Manned Space Project with No.CMS-CSST-2021-B05。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部