期刊文献+

基于多策略改进麻雀算法优化DELM的CSTR辨识

Identification of CSTR Based on Multi-strategy Improved Sparrow Algorithm Optimizing DELM
在线阅读 下载PDF
导出
摘要 针对一类连续搅拌反应釜(CSTR)存在强非线性和时变性,难以建立准确数学模型的问题,提出一种新的基于多策略改进麻雀算法优化深度极限学习机(OtSSA-DELM)的Hammerstein-Wiener模型的辨识建模的方法。针对麻雀算法像其他群智能算法一样后期寻优精度低、易陷入局部最优等缺点提出三点改进措施,首先利用正交阵列对麻雀种群初始化,再使用鱼鹰优化算法在第一阶段的全局勘探策略替换原始麻雀算法的探索者位置更新公式,最后采用t-分布变异策略替换原始麻雀算法的跟随者位置更新公式,并使用测试函数验证其改进的性能。使用改进的麻雀算法对DELM网络训练过程单层网络的输入权重和偏置因子进行寻优,解决DELM易陷入局部最优的缺点。最后利用该混合优化算法对Hammerstein-Wiener模型进行辨识实验,实验表明利用该混合优化算法相比于其他群智能算法优化DELM对Hammerstein-Wiener模型具有较高的辨识精度。 Aiming at the problem that it is difficult to establish an accurate mathematical model for a class of continuous stirred reactor(CSTR)due to its strong nonlinear and time variability,a new method for identification and modeling of Hammerstein-Wiener model based on multi-strategy improved Sparrow algorithm optimized Deep Extreme Learning Machine(OtSSA-DELM)is proposed.In view of the shortcomings of Sparrow algorithm like other swarm intelligence algorithms,such as low optimization accuracy in late optimization and easy to fall into local optimality,three improvement measures are proposed.Firstly,orthogonal array is used to initialize sparrow population,and then the Osprey optimization algorithm is used to replace the explorer position update formula of the original sparrow algorithm with the global exploration strategy in the first stage.Finally,the follower position update formula of the original Sparrow algorithm is replaced by T-mutation strategy,and its improved performance is verified by test function.The improved Sparrow algorithm is used to optimize the input weight and bias factor of the single-layer network in the training process of DELM network,which can solve the problem of DELM falling into local optimal.Finally,the identification experiment of Hammerstein-Wiener model is carried out by using this hybrid optimization algorithm.The experiment shows that the optimization of DELM by this hybrid optimization algorithm has higher identification accuracy than that of other swarm intelligent algorithms.
作者 盛斌 张军 Sheng Bin;Zhang Jun(Shanghai University of Electric Power,Shanghai 200090,China)
出处 《化工设备与管道》 CAS 北大核心 2024年第6期7-16,共10页 Process Equipment & Piping
基金 国家自然科学基金(61273190)。
关键词 HAMMERSTEIN-WIENER模型 模型辨识 深渡极限学习机 麻雀算法 连续搅拌反应釜 hammerstein-wiener model model identification deep crossing extreme learning machine sparrow algorithm continuous stirred tank reactor
  • 相关文献

参考文献16

二级参考文献122

  • 1邹同华,高云鹏,伊慧娟,徐长宝,夏睿,吴聪.基于Thompson tau-四分位和多点插值的风电功率异常数据处理[J].电力系统自动化,2020(15):156-165. 被引量:46
  • 2王承,陈光,谢永乐.多层感知机在模拟/混合电路故障诊断中的应用[J].仪器仪表学报,2005,26(6):578-581. 被引量:13
  • 3张艳,李少远,王笑波,周坚刚.基于粒子群优化的Wiener模型辨识与实例研究[J].控制理论与应用,2006,23(6):991-995. 被引量:15
  • 4GOETHALS I, PELCKMANS K, SUYKENS J A K, et al. Identification of MIMO Hammerstein models using least squares supports vector machines [J]. Automatica, 2005, 41(7) .1263 - 1272.
  • 5PELCKMANS K, GOETHALS I, SUYKENS J A K, et al. On model complexity control in identification of Hammerstein systems [C]//Proceedings of the 4th IEEE Conference on Decision and Control, and the European Control Conference. Brussels, Belgium: IEEE, 2005:12 -15.
  • 6CHEN H F. Recursive identification for Wiener model with discontinuous piece-wise linear function[J]. IEEE Trans on Automatic Control, 2006, 51 (3) : 390 - 400.
  • 7SUYKENS J A K, VANDEWALLE J, MOOR B D. Optimal control by least squares supports vector machines [J]. Neural Networks, 2001, 14(1) :23 - 35.
  • 8GOETHALS I, PELCKMANS K, SUYKENS J A K, et al. NARX identification of Hammerstein models using least squares support vector machines [C]//Proceedings of the 6th IFAC Symposium on Nonlinear Control Systems. Stuttgart, Germany : IEEE,2004 : 507 - 512.
  • 9BAI E W. An optimal two-stage identification algorithm for Hammerstein-wiener nonlinear systems [J]. Automatica, 1998, 34(3) .333 - 338.
  • 10宋海鹰,桂卫华,阳春华.基于最小二乘支持向量机的Hammerstein-Wiener模型辨识[C]//第26届中国控制会议论文集.北京:北京航空航天大学出版社,2007:260-263.

共引文献208

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部