期刊文献+

基于L2-BP神经网络的变风量空调系统TRNSYS仿真模型故障诊断

Fault Diagnosis of Variable Air Volume Air Conditioning System TRNSYS Simulation Model Based on L2-BP Neural Network
原文传递
导出
摘要 变风量空调系统的故障检测与诊断对于提高建筑环境质量和实现节能至关重要。该系统故障类型复杂、数据量巨大、非线性特性强,传统的基于模型和基于规则的方法较难应用。本文提出了一种基于数据驱动的L2-BP神经网络故障诊断方法,首先通过TRNSYS模拟软件建立VAV空调系统仿真模型,获得四种常见故障的仿真模拟数据,然后利用运行数据和实际数据对L2-BP神经网络故障诊断模型进行验证。结果表明,本文提出的故障诊断模型能够克服单一方法的局限性,针对单一故障进行有效识别。 Fault detection and diagnosis of variable air volume air conditioning systems is crucial to improving the quality of building environment and achieving energy conservation.The system has complex fault types,huge data volume,and strong nonlinear characteristics.Traditional model-based and rule-based methods are difficult to apply.This paper proposes a data-driven L2-BP neural network fault diagnosis method.First,a VAV air conditioning system simulation model is established through TRNSYS simulation software to obtain simulation data of four common faults.Then,the L2-BP neural network fault diagnosis model is verified using operating data and actual data.The results show that the fault diagnosis model proposed in this paper can overcome the limitations of a single method and effectively identify a single fault.
作者 龚婉婷 Wanting Gong(School of Environment and Architecture,University of Shanghai for Science and Technology,Shanghai)
出处 《建模与仿真》 2024年第6期6493-6502,共10页 Modeling and Simulation
关键词 TRNSYS仿真模型 L2正则化 BP神经网络 变风量空调系统 故障诊断 TRNSYS Simulation Model L2 Regularization BP Neural Network Variable Air Volume Air Conditioning System Fault Diagnosis
  • 相关文献

参考文献3

二级参考文献29

  • 1ROSSI M, BRAUN J. A statistical, rule-based fault detection and diagnostic method for vapor compression air conditioners[J].International Journal of HVAC R Research, 1997, 3(1) :19-37.
  • 2LEE Y, HOUSE J, SHIN D. Fault diagnosis and temperature sensor recovery for an air-handling unit [J].ASHRAE Transactions, 1997, 103 (1):621-633.
  • 3WANG S, CHEN Y. Fault-tolerant control for outdoor ventilation air flow rate in building based on neural network[J].Building and Environment, 2002, 37 (7):691-704.
  • 4WANG S, XIAO F. AHU sensor fauk diagnosis using principal component analysis method [J]. Energy and Buildings, 2004, 36:147-160.
  • 5WANG S, CUI J. A robust fault detection and diagnosis strategy for centrifugal chillers[J]. Heating Ventilating and Air Conditioning and Refrigerating Research, 2006, 12 (5) : 407-428.
  • 6DU Z, JINX. Detection and diagnosis for sensor fauk in HVAC systems [J]. Energy Conversion and Management, 2007, 48(3):693-702.
  • 7XU X, XIAO F, WANG S. Enhanced chiller sensor fault detection, diagnosis and estimation using wavelet analysis and principal component analysis methods[J]. Applied Thermal Engineering, 2008, 28 (2/3): 226- 237.
  • 8SALSBURY T, DIAMOND R C. Fault detection in HVAC systems using model-based feedforward control [J]. Energy and Buildings, 2001, 33 (4):403-415.
  • 9LIU X, DEXTER A. Fault-tolerant supervisory control of VAV air-conditioning systems [J]. Energy and Buildings,2001, 33 (4) :379-389.
  • 10WANG S, WANG J. Robust sensor fault diagnosis and validation in HVAC systems[J]. Transactions of the Institute of Measurement and Control, 2002, 24 (3): 231-262.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部