摘要
为研究Mn18Cr18N奥氏体不锈钢在准静态和动态载荷下的微观组织演变和力学性能,利用万能试验机和分离式Hop-kinson压杆(SHPB)试验装置对Mn18Cr18N奥氏体不锈钢试样进行不同应变速率下的压缩试验,并采用金相显微镜(OM)、电子背散射衍射(EBSD)技术等表征方法对变形前和变形后的微观组织进行分析,探究其力学性能和强化机理。进一步对预加载后的试样进行950℃保温30 min的退火热处理,分析退火热处理对不同预加载Mn18Cr18N奥氏体不锈钢变形微观组织的影响。结果表明:准静态和动态下的强度均增强,预变形以滑移为主,含有大量位错,表现为位错强化机制;退火处理后发生完全静态再结晶,其引起的晶粒细化对材料塑性的提高起到积极作用。
To study the microstructure evolution and mechanical properties of Mn18Cr18N austenitic stainless steel under quasi-static and dynamic loading,compression experiments were carried out on Mn18Cr18N austenitic stainless steel specimens with different strain rates by using universal testing machine and split Hopkinson press bar(SHPB)experimental setup,and the characterization methods,such as metallurgical microscopy(OM),electron backscattering diffraction(EBSD)technique and others,were used to analyze the microstruc-ture before and after deformation to investigate the mechanical properties and strengthening mechanism.The pre-loaded specimens were further subjected to annealing heat treatment at 950℃for 30 min to analyze the effects of annealing heat treatment on the deformed micro-structures of different pre-loaded Mn18Cr18N austenitic stainless steels.The results show that the strength is enhanced under both quasi-static and dynamic conditions,and the pre-deformation is dominated by slip and contains a large number of dislocations,which manifests dislocation strengthening mechanism;complete static recrystallisation occurs after the annealing treatment,and the grain refinement in-duced plays a positive role in the enhancement of the plasticity of the material.
作者
秦凤明
杜时丹
郑晓华
李亚杰
赵晓东
QIN Feng-ming;DU Shi-dan;ZHENG Xiao-hua;LI Ya-jie;ZHAO Xiao-dong(School of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China)
出处
《塑性工程学报》
CAS
CSCD
北大核心
2024年第12期159-169,共11页
Journal of Plasticity Engineering
基金
山西省自然科学基金资助项目(202103021224282,202103021223288)。
关键词
Mn18Cr18N奥氏体不锈钢
预变形
退火强化
组织演变
Mn18Cr18N austenitic stainless steel
pre-deformation
annealing strengthening
microstructure evolution