期刊文献+

自动提取定量肿瘤内部磁敏感信号联合R2^(*)值预测卵巢癌FIGO分期的价值

The value of automatic extraction of quantitative magnetic susceptibility signal within tumors combined with R2^(*) value in evaluating the FIGO staging of ovarian cancer
在线阅读 下载PDF
导出
摘要 目的:探讨增强T2^(*)加权血管成像(ESWAN)序列的R2^(*)值及自动提取定量肿瘤内部磁敏感信号(ITSS)对卵巢癌患者国际妇产科联盟(FIGO)分期的预测价值。材料与方法:回顾性分析行1.5T MRI扫描(含ESWAN序列)经病理证实的37例卵巢癌患者的资料,其中7例累及双侧卵巢,共44个卵巢病灶,根据FIOG分期将其分为早期组(FIGO分期为Ⅰ~Ⅱ期)18例患者19个卵巢病灶和晚期组(FIGO分期为Ⅲ~Ⅳ期)19例患者25个卵巢病灶。由2名观察者分别测量两组病灶实性部分的R2^(*)值,并使用AnatomySketh软件隔层勾画病变,自动获得定量ITSS病变最大层面比率(ITSSs)和ITSS病变肿瘤体积比率(ITSSv)。通过组内相关系数(ICC)评估观察者间测量的一致性。比较两组各参数的差异,采用受试者工作特征(ROC)曲线评估R2^(*)及ITSS各参数的阈值及诊断效能,采用逻辑回归分析将三组参数进行联合并评估其诊断效能。采用Delong检验比较ROC曲线下面积(AUC)的差异。结果:2位观察者测得两组参数的一致性良好(ICC均>0.75),晚期卵巢癌组的R2^(*)值、ITSSs及ITSSv分别为16.97(12.44,22.41)Hz、0.24(0.19,0.27)、0.23(0.20,0.27),均高于早期卵巢癌组(10.66(9.01,12.82)Hz、0.14(0.10,0.21)、0.17(0.11,0.21)),差异有统计学意义(P均<0.05)。R2^(*)值、ITSSs、ITSSv及三者联合鉴别诊断两组病变的AUC分别为0.832、0.760、0.764、0.897,三者联合的AUC最高,诊断晚期卵巢癌的敏感度和特异度分别为92.0%和68.4%。R2^(*)与ITSSs及ITSSv对比,诊断效能的差异无统计学意义,三者联合的诊断效能优于ITSSs,差异有统计学意义(Z=1.977,P=0.048),三者联合与R2^(*)及ITSSv的诊断效能比较,差异无统计意义(Z=1.366、1.807,P=0.171、0.07)。结论:R2^(*)值和ITSS均可有效预测卵巢癌的FIGO分期,自动提取定量ITSS更便捷,三者联合可提高诊断效能。 Objective:To investigate the predictive value of R2^(*) values of enhanced T2^(*) weighted angiography(ESWAN)sequence and automatic extraction of quantitative intratumor magnetic sensitive signal(ITSS)in the clinical staging of ovarian cancer patients in the international federation of obstetrics and gynecology(FIGO).Materials and Methods:The data of 37patients with pathologically confirmed ovarian cancer who underwent 1.5T MRI scan(including ESWAN sequence)were retrospectively analyzed.Among them,7 cases involved bilateral ovaries,with a total of 44 ovarian lesions.According to FIOG stage,they were divided into early group(FIGO stage Ⅰ to Ⅱ),18 patients with 19 ovarian lesions,and late group(FIGO stage Ⅲ to Ⅳ),19 patients with 25 ovarian lesions.The R2^(*)values of lesions in the two groups were measured by 2 observers,and AnatomySketh software was used to delineate lesions,and quantitative ITSS lesion maximum slice ratio(ITSSs)and ITSS lesion tumor volume ratio(ITSSv)were obtained.Intra-group correlation coefficient(ICC)was used to evaluate the consistency of the measurements between observers.The difference of parameters between the two groups was compared,and the threshold values and diagnostic efficacy of R2^(*) and ITSS parameters were evaluated by receiver operating characteristic(ROC)curve.Logistic regression analysis was used to combine the three groups of parameters and evaluate their diagnostic efficacy.Delong test was used to compare the difference in area under ROC curve(AUC).Results:The parameters of the two groups were consistent(ICC>0.75),and the R2^(*) value,ITSSs and ITSSv of the advanced ovarian cancer group were 16.97(12.44,22.41)Hz,0.24(0.19,0.27),0.23(0.20,0.27),respectively,which were higher than those of early ovarian cancer group at 10.66(9.01,12.82)Hz,0.14(0.10,0.21),0.17(0.11,0.21),and the differences were statistically significant(Z=-3.732,-2.926,-2.974,all P<0.05).The AUC values of R2^(*),ITSSs,ITSSv and their combination were 0.832,0.760,0.764 and 0.897,respectively.The AUC value of their combination was the highest,and the sensitivity and specificity of the diagnosis of advanced ovarian cancer were 92.0% and 68.4%,respectively.Compared with ITSSs and ITSSv,there was no significant difference in diagnostic efficiency of R2^(*)(Z=0.671,0.664,P=0.502,0.506).The diagnostic efficacy of the combination of the three was better than that of ITSSs,and the difference was statistically significant(Z=1.977,P=0.048),while the diagnostic efficacy of the combination of the three was not statistically significant compared with R2^(*) and ITSSv(Z=1.366,1.807,P=0.171,0.07).Conclusion:Both R2^(*) value and ITSS can effectively predict the FIGO stage of ovarian cancer,automatic extraction of quantitative ITSS is more convenient,and the combined diagnosis of the three can effectively improve the diagnostic efficiency.
作者 郝丽 刘爱连 王艺 宋庆玲 李烨 王洪凯 庄明睿 HAO Li;LIU Ai-lian;WANG Yi;SONG Qing-ling;LI Ye;WANG Hong-kai;ZHUANG Ming-rui(Department of Radiology,the First Affiliated Hospital of Dalian Medical University,Dalian Liaoning 110611,China;Department of Medical,Dalian University of Technology,Dalian Liaoning 110651,China)
出处 《中国临床医学影像杂志》 CAS CSCD 北大核心 2024年第12期882-888,共7页 Journal of China Clinic Medical Imaging
关键词 卵巢肿瘤 磁共振成像 Ovarian Neoplasms Magnetic Resonance Imaging
  • 相关文献

参考文献9

二级参考文献57

  • 1高微波,邓鹏飞,杨全新,何拓,李晓会,王琳,陈吉新,贺心畋,陈欣.基于DCE-MRI影像组学鉴别乳腺良恶性肿块的可行性研究[J].临床放射学杂志,2020,39(4):674-679. 被引量:13
  • 2刘翠翠,张颖,王敏娜,关婷.ZEB1-AS1通过调控miRNA-200c靶向Wnt/β-catenin通路对卵巢癌发生发展的影响[J].解剖科学进展,2022,28(4):388-393. 被引量:2
  • 3Hartman DS,Davis CJ Jr,Johns T,et al.Cystic renal cell carcinoma.Urology,1986,28(2):145-153.
  • 4Wahal SP,Mardi K.Multilocular cystic renal cell carcinoma:a rare entity with review of literature.J Lab Physicians,2014,6(1):50-52.
  • 5Jhaveri KS,Cleary SP,Fischer S,et al.Blood oxygen level-dependent liver MRI:can it predict microvascular invasion in HCC?.J Magn Reson Imaging,2013,37(3):692-699.
  • 6Chen J,Ding J,Dai Y,et al.Assessment of intratumoral micromorphology for patients with clear cell renal cell carcinoma using susceptibility-weighted imaging.PLo S One,2013,8(6):e65866.
  • 7Zhang J,Liu B,Song N,et al.Diagnosis and treatment of cystic renal cell carcinoma.World J Surgi Oncol,2013,11(3):158.
  • 8Jhaveri K,Gupta P,Elmi A,et al.Cystic renal cell carcinomas:do they grow,metastasize,or recur?.AJR Am J Roentgenol,2013,201(2):292-296.
  • 9Huber J,Winkler A,Jakobi H,et al.Preoperative decision making for renal cell carcinoma:cystic morphology in cross-sectional imaging might predict lower malignant potential.Urol Oncol,2014,32(1):1-6.
  • 10Mühlfeld AS,Lange C,Kroll G,et al.Pilot study of non-contrastenhanced MRI vs.ultrasound in renal transplant recipients with acquired cystic kidney disease:a prospective intra-individual comparison.Clin Transplant,2013,27(6):E694-701.

共引文献1788

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部