期刊文献+

带有启动时间单重休假的Geom/G/1排队 被引量:6

The Geom/G/1 Queue with Single Vacation and Server Set-up Times
在线阅读 下载PDF
导出
摘要 本文研究带有启动时间的单重休假Geom/G/ 1离散时间排队 ,导出了稳态队长、等待时间的分布和母函数及其随机分解结果和稳态系统忙期的分析。 In this paper we consider a discrete time queueing system with single vacation and set up time Geom/G/1. We derive the generating functin and the steady state queue length, waiting time and busy peroid distributions,the stochastic decomposition.
机构地区 燕山大学理学院
出处 《运筹与管理》 CSCD 2002年第5期5-9,共5页 Operations Research and Management Science
基金 国家自然科学资金项目 [198710 72 ]
关键词 启动时间 单重休假 Geom/G/1排队 离散时间排队 随机分解 discrete time queue single vacation set up time stochastic decomposition.
  • 相关文献

参考文献5

二级参考文献14

  • 1田乃硕.Geometric/G/1休假随机服务系统[J].应用数学与计算数学学报,1993,7(2):71-78. 被引量:20
  • 2Kobayashi H, Konheim G. Queueing models for computer communications system analysis[J]. IEEE Trans. Com. C25, 1977, 2-29.
  • 3Schwartz M. Broadhand Integrated Networks[M]. New York: Prentice Hall, 1996.
  • 4Doshi B. Queueing systems with vacations-A survey[J]. QUESTA, 1996, (1) :29-66.
  • 5Takagi H. Analysis of a discrete time queueing system with time-limited service[J], QUESTA, 1994,18(2) : 183-197.
  • 6Hassan M, Atiquzzaman M. A delayed vacation model of an M/G/1 queue with setup time and Its application to SVCCbased ATM networks[J], IEEE, Trans, Com. E80-B, 1997(2):317-323.
  • 7Niu. Z, Takahasi Y. A finite capacity queue with exhaustive vacation/close-down/setup times and Markovian arrival processes[J]. Questa, 1999,(31): 1-23.
  • 8Hunter J. Mathematical Techniques of Applied Probability[M]. New York: Academic Press, 1983.
  • 9Jacqueline Loris-Teghem. Vacation policies in an M/G/1 type queueing system with finite capacity[J] 1988,Queueing Systems(1):41~52
  • 10Tayfur Altiok. Queues with group arrivals and exhaustive service discipline[J] 1987,Queueing Systems(4):307~320

共引文献64

同被引文献24

  • 1马占友,徐秀丽,田乃硕.多重休假的带启动——关闭期的Geom/G/1排队[J].运筹与管理,2004,13(5):21-25. 被引量:12
  • 2田乃硕.Geometric/G/1休假随机服务系统[J].应用数学与计算数学学报,1993,7(2):71-78. 被引量:20
  • 3朱翼隽,胥秀珍.空竭服务多级适应性休假Geom^X/G/1排队系统分析[J].江苏大学学报(自然科学版),2005,26(2):133-136. 被引量:9
  • 4Takagi H.Queueing Analysis-A Foundation of Performance Evaluation[M].Amsterdam:Northholland,1993.
  • 5Zhang Z J,Tian N S.Discrete time with multiple adaptive vacation[J].Systems,2001,38(4):419 -443.
  • 6马占友 田乃硕.带启动时间的多重休假的排队.运筹与管理,2001,11(4):5-10.
  • 7Lee Y.Discrete-Time Queue with Preemptive RepeatDifferentPriority[J].Queueing Systems,2003,44 (4):399-411.
  • 8Cohen Cohen, J. The Single Server Queue[M]. Amsterdam: North-Holland Publishing Company, 1982.
  • 9Meisling Meisling, T,Discrete time queueing theory[J].Opns Res.1958, 6: 96-105.
  • 10NEUTS M. Matrix- geometric solutions in stochastic models[ M]. Baltimore: Johns Hopkins University Press,1981.

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部