期刊文献+

TCMLLM-PR:evaluation of large language models for prescription recommendation in traditional Chinese medicine

TCMLLM-PR:中医处方推荐大模型评价
在线阅读 下载PDF
导出
摘要 Objective To develop and evaluate a fine-tuned large language model(LLM)for traditional Chinese medicine(TCM)prescription recommendation named TCMLLM-PR.Methods First,we constructed an instruction-tuning dataset containing 68654 samples(ap-proximately 10 million tokens)by integrating data from eight sources,including four TCM textbooks,Pharmacopoeia of the People’s Republic of China 2020(CHP),Chinese Medicine Clinical Cases(CMCC),and hospital clinical records covering lung disease,liver disease,stroke,diabetes,and splenic-stomach disease.Then,we trained TCMLLM-PR using Chat-GLM-6B with P-Tuning v2 technology.The evaluation consisted of three aspects:(i)compari-son with traditional prescription recommendation models(PTM,TCMPR,and PresRecST);(ii)comparison with TCM-specific LLMs(ShenNong,Huatuo,and HuatuoGPT)and general-domain ChatGPT;(iii)assessment of model migration capability across different disease datasets.We employed precision,recall,and F1 score as evaluation metrics.Results The experiments showed that TCMLLM-PR significantly outperformed baseline models on TCM textbooks and CHP datasets,with F1@10 improvements of 31.80%and 59.48%,respectively.In cross-dataset validation,the model performed best when migrating from TCM textbooks to liver disease dataset,achieving an F1@10 of 0.1551.Analysis of real-world cases demonstrated that TCMLLM-PR's prescription recommendations most closely matched actual doctors’prescriptions.Conclusion This study integrated LLMs into TCM prescription recommendations,leverag-ing a tailored instruction-tuning dataset and developing TCMLLM-PR.This study will pub-licly release the best model parameters of TCMLLM-PR to promote the development of the decision-making process in TCM practices(https://github.com/2020MEAI/TCMLLM). 目的构建并评估一个面向中医(TCM)处方推荐的微调大语言模型(LLM),命名为TCMLLM-PR。方法首先,我们通过整合来自八个来源的数据构建了一个包含68654个样本(约1000万个令牌)的指令微调数据集,包括四本中医教材、《中华人民共和国药典》(2020年版)(CHP)、中医临床病例(CMCC)以及涵盖肺病、肝病、中风、糖尿病和脾胃病的医院临床记录。然后,我们使用ChatGLM-6B和P-Tuning v2技术微调TCMLLM-PR。评估包括三个方面:(1)与传统处方推荐模型(PTM、TCMPR、PresRecST)的比较;(2)与中药特异性LLM(神农、华佗、华佗GPT)和通用领域ChatGPT的比较;(3)评估不同疾病数据集之间的模型迁移能力。此外,我们采用了在处方推荐任务中常用的精确度、召回率和F1分数作为评估指标。结果实验表明TCMLLM-PR在中医教材和CHP数据集上的表现明显优于基线模型,F1@10提升分别为31.80%和59.48%。在跨数据集验证中,该模型在从中医教材迁移到肝病数据集时表现最佳,F1@10为0.1551。对实际案例的分析表明,TCMLLM-PR的处方建议与实际医生处方最为匹配。结论本研究将LLMs整合到中医处方推荐中,利用量身定制的指令微调数据集并开发了TCMLLM-PR。同时,本研究将公开TCMLLM-PR的最佳模型参数,促进中医临床决策支持的发展(https://github.com/2020MEAI/TCMLLM)。
作者 TIAN Haoyu YANG Kuo DONG Xin ZHAO Chenxi YE Mingwei WANG Hongyan LIU Yiming HU Minjie ZHU Qiang YU Jian ZHANG Lei ZHOU Xuezhong 田昊宇;杨扩;董鑫;赵辰羲;叶明蔚;王鸿燕;刘一铭;胡敏杰;诸强;于剑;张磊;周雪忠(北京交通大学计算机科学与技术学院交通数据分析与挖掘北京市重点实验室,北京100044;中国中医科学院国家中医药数据中心,北京100700)
出处 《Digital Chinese Medicine》 CSCD 2024年第4期343-355,共13页 数字中医药(英文)
基金 National Key Research and Development Program(2023YFC3502604) National Natural Science Foundation of China(U23B2062 and 82374302).
关键词 Large language models Instruction-tuning Prescription recommendation Traditional Chinese medicine(TCM) Assisted decision-making 大语言模型 指令微调 处方推荐 中医药 辅助决策支持
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部