摘要
针对稀疏线阵波达方向估计精度较低问题,提出一种稀疏线阵双迭代傅里叶优化方法。基于阵列孔径原理,利用阵列因子与阵元激励间的傅里叶变换关系,构建稀疏线阵构型优化目标函数;提出双迭代傅里叶变换算法,制定合理的旁瓣阈值和旁瓣约束条件,依据稀疏率和阵元数将孔径自适应分区,以阵列峰值旁瓣和孔径为约束,由双层嵌套循环迭代优化阵列麦克风数量和位置,获得更低的阵列峰值旁瓣电平。数值仿真和实验结果表明,根据该方法获得的49.5λ孔径、23%稀疏率的稀疏阵列峰值旁瓣电平为-21.59 dB,主瓣宽度为1.03°,角度分辨率为1°,估计误差小于0.01。与其他方法对比,峰值旁瓣低1 d B,优化效率提升50%,由此可证明该方法的有效性和快速性。
Aiming at the problem of low accuracy of direction arrival estimation of sparse linear arrays,a dual iterative Fourier optimization method for sparse linear array was proposed.Based on the principle of array aperture,the objective function of sparse linear array configuration optimization was constructed by using the Fourier transform relationship between array factor and array element excitation.A double iterative Fourier transform algorithm was proposed,and reasonable sidelobe threshold and sidelobe constraint conditions were formulated.The aperture was adaptively partitioned according to sparsity rate and array element number.With the array peak sidelobe and aperture as constraints,the number and position of array microphones were optimized by double-layer nested loop iteration,and a lower array peak sidelobe level was obtained.The numerical simulation shows that the peak sidelobe level of the sparse array with 49.5λaperture and 23%sparsity rate is-21.59 dB,the main lobe width is 1.03°,the angular resolution is 1°,and the estimation error is less than 0.01.Compared with other methods,the peak sidelobe is 1 dB lower and the optimization efficiency is increased by 50%,which proves the effectiveness and rapidity of this method.
作者
徐希鑫
赵化良
刘志红
张开业
孙琪
XU Xixin;ZHAO Hualiang;LIU Zhihong;ZHANG Kaiye;SUN Qi(School of Mechanical and Automotive Engineering,Qingdao University of Technology,Qingdao 266520,Shandong,China;Key Laboratory of Industrial Fluid Energy-saving and Pollution Control,State Ministry of Education,Qingdao University of Technology,Qingdao 266520,Shandong,China)
出处
《噪声与振动控制》
北大核心
2025年第1期97-104,共8页
Noise and Vibration Control
基金
国家自然科学基金面上资助项目(61871447)
山东省自然科学基金面上资助项目(ZR2023MF018)。
关键词
信号处理
稀疏线阵
波达方向估计
双迭代傅里叶变换
旁瓣阈值
旁瓣约束条件
signal processing
sparse linear array
direction of arrival estimation
double iterative Fourier transform
sidelobe threshold
sidelobe constraint condition