期刊文献+

Bilateral Reference for High-Resolution Dichotomous Image Segmentation

原文传递
导出
摘要 We introduce a novel bilateral reference framework(BiRefNet)for high-resolution dichotomous image segmentation(DIS).It comprises two essential components:the localization module(LM)and the reconstruction module(RM)with our proposed bilateral reference(BiRef).LM aids in object localization using global semantic information.Within the RM,we utilize BiRef for the reconstruction process,where hierarchical patches of images provide the source reference,and gradient maps serve as the target reference.These components collaborate to generate the final predicted maps.We also introduce auxiliary gradient supervision to enhance the focus on regions with finer details.In addition,we outline practical training strategies tailored for DIS to improve map quality and the training process.To validate the general applicability of our approach,we conduct extensive experiments on four tasks to evince that BiRefNet exhibits remarkable performance,outperforming task-specific cutting-edge methods across all benchmarks.Our codes are publicly available at https://github.com/ZhengPeng7/BiRefNet.
出处 《CAAI Artificial Intelligence Research》 2024年第1期82-93,共12页 CAAI人工智能研究(英文)
基金 supported by the Fundamental Research Funds for the Central Universities(No.Nankai University,63243150).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部