期刊文献+

BP神经网络回归预测模型的改进

Improvement of BP Neural Network Regression Prediction Model
在线阅读 下载PDF
导出
摘要 为了优化BP神经网络,提出了一种优化BP神经网络的流程。首先,判断各影响因素之间的自相关性,如果各影响因素满足自相关评价指标,则可以使用BP神经网络进行回归训练;其次,改变BP神经网络的隐藏节点数、学习效率、训练误差和训练次数等影响因素;最后,加入遗传算法或者粒子群算法与BP神经网络组成混合算法,以提高BP神经网络的训练精度。 In order to optimize the BP neural network,this paper proposes a process to optimize the BP neural network.First of all,judge the auto-correlation between each influencing factor.If each influencing factor meets the auto-correlation evaluation index,the BP neural network can be used for regression training.Secondly,change the number of hidden nodes,learning efficiency,training error,training times and other influencing factors of BP neural network.Add a genetic algorithm or particle swarm algorithm and BP neural network to form a hybrid algorithm to improve the training accuracy of BP neural network.
作者 何大四 金璐琪 张祖铭 赵强强 HE Dasi;JIN Luqi;ZHANG Zuming;ZHAO Qiangqiang(School of Energy&Environment,Zhongyuan University of Technology,Zhengzhou 451191,China)
出处 《机械工程与自动化》 2025年第1期224-226,共3页 Mechanical Engineering & Automation
关键词 BP神经网络 隐藏节点 混合算法 回归预测 自相关性 BP algorithm hidden node hybrid algorithm regression prediction auto-correlation
  • 相关文献

参考文献4

二级参考文献29

  • 1马晓敏,王新.基于遗传算法的BP神经网络改进[J].云南大学学报(自然科学版),2013,35(S2):34-38. 被引量:15
  • 2陆金桂,余俊,王浩,陈新度,周济,肖世德.基于人工神经网络的结构近似分析方法的研究[J].中国科学(A辑),1994,24(6):653-658. 被引量:46
  • 3许素强,夏人伟.结构优化方法研究综述[J].航空学报,1995,16(4):385-396. 被引量:67
  • 4路志峰 郭海丁.基于BP神经网络的结构优化设计综述[A]..中国航空学会第十届发动机结构强度振动会议文集[C].安徽歙县,2000,10.291-293.
  • 5Kennedy J,Eberhart R. Particle Swarm Optimization. IEEE on Networks, 1995.1942 - 1948.
  • 6Angeline P J. Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences. Proc. Seventh Annual Conferenceon Evolutionary Programming, 1998,256 - 260.
  • 7Shi Y, Eberhart R. Empirical study of particle swarm optimization. Intemational Conference on Evolutionary Computatiorr. Washington, USA: IEEE, 1999. 1945 - 1950.
  • 8Shi Y, Eberhart R. Fuzzy adaptive swarm optimization. The tEEE Congress on Evolutionary Computation. San. Francisco, USA: IEEE, 2001.101 - 106.
  • 9Eberhart R, Shi Y. Tracking and optimizing dynamic systems with particle swarms. The IEEE Congresson Evolutionary Computation. San Francisco, USA: IEEE, 2001.94- 100.
  • 10Yasuda K, Ide A, Iwasaki N. Adaptive particle swarm optimization. 2003 IEEE International Conference on Systems, Man and Cybernetics. Piscataway: IEEE Service Center, 2003.1554- 1559.

共引文献208

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部