期刊文献+

植物甘油醛-3-磷酸脱氢酶研究进展

Research progress on plant glyceraldehyde-3-phosphate dehydrogenase
在线阅读 下载PDF
导出
摘要 在植物细胞中,甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)具有十分重要的功能.胞质型GAPDH主要参与糖酵解以及调节植物的抗氧化反应,在应对干旱、盐等胁迫时具有一定的作用.叶绿体GAPDH是卡尔文循环的关键酶之一,主要负责碳固定和能量转换,其活性受光照强度和氧化还原状态的调节.GAPDH可以通过糖酵解提供能量,还可以通过活性氧清除和基因表达调控,在植物抗逆过程中发挥关键作用.另外,GAPDH同时受植物激素的调控,在逆境胁迫下体现了多功能性.GAPDH还与细胞信号传导有关,通过与细胞骨架蛋白的相互作用调控植物细胞的形态变化.因此,GAPDH不仅在能量代谢中发挥重要作用,还在植物的抗逆性和发育调控中起到了多种作用.对植物中GAPDH的结构功能、逆境应答、植物激素调控以及细胞信号传导方面的研究进展进行概括总结,为进一步研究植物GAPDH在植物生长发育调控、抗逆过程中的机制以及利用植物GAPDH进行优良品种选育提供参考. In plant cells,the glyceraldehyde-3-phosphate dehydrogenases(GAPDHs)have very important functions.The cytosolic GAPDHs are mainly involved in glycolysis and the regulation of plant antioxidant responses,and play roles in coping with stresses including drought and salt stress.The chloroplastic GAPDHs are one of the key enzymes in the Calvin cycle,primarily responsible for carbon fixation and energy conversion,and their activity is regulated by light intensity and redox state.GAPDHs can provide energy through glycolysis,and play a key roles in plant stress resistance by scavenging reactive oxygen species and regulating gene expression.Additionally,GAPDHs are controlled by phytohormones,demonstrating their multifunctionality under stress conditions.GAPDHs are also involved in the cell signaling,and regulates morphological changes of plant cells through interactions with cytoskeletal proteins.Therefore,GAPDHs not only play an important roles in energy metabolism,but also play a variety of roles in plant stress resistance and developmental regulation.The structures and functions,stress responses,regulation by plant hormones,cell signaling,and other aspects of GAPDHs in plants were summarized,to provide references for further investigating the mechanisms of plant GAPDH in the regulation of plant growth and development,and the process of stress resistance,and the selective breeding of improved plant varieties by using plant GAPDH.
作者 闫恩典 韩艺 鞠艳 彭疑芳 马天意 YAN Endian;HAN Yi;JU Yan;PENG Yifang;MA Tianyi(School of Life Sciences,Agriculture and Forestry,Qiqihar University,Qiqihar 161006,China;Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas,Qiqihar University,Qiqihar 161006,China)
出处 《高师理科学刊》 2025年第1期83-88,共6页 Journal of Science of Teachers'College and University
基金 黑龙江省省属高等学校基本科研业务费科研项目(145409452)。
关键词 甘油醛-3-磷酸脱氢酶 植物逆境胁迫抗性 植物激素调控 细胞信号传导 glyceraldehyde-3-phosphate dehydrogenase plant stress resistance phytohormones regulation cell signaling
  • 相关文献

参考文献3

二级参考文献80

  • 1李晓泽,刘关君,杨传平.西伯利亚蓼甘油醛-3-磷酸脱氢酶基因的cDNA克隆与序列分析[J].植物生理学通讯,2007,43(1):41-48. 被引量:20
  • 2Baalmann, E., Backhausen, J.E., Klitzmann, C., and Scheibe, R. (1994). Regulation of NADP-dependent glyceraldehyde-3- phosphate dehydrogenase activity in spinach chloroplasts. Bot. Acta. 107, 313-320.
  • 3Baalmann, E., Backhausen, J.E., Rak, C., Vetter, S., and Scheibe, R. (1995). Reductive modification and nonreductive activation of purified spinach chloroplast NADP-dependent glyceraldehyde- 3-phosphate dehydrogenase. Arch. Biochem. Biophys. 324, 201-208.
  • 4Baalmann, E., Scheibe, R., Cerff, R., and Martin, W. (1996). Functional studies of chloroplast glyceraldehyde-3-phosphate dehydrogenase subunits A and B expressed in Escherichia coli. formation of highly active A4 and B4 homotetramers and evidence that the aggregation of the B4 complex is mediated by the B-subunit carboxv terminus. Plant Mol. Biol. 32. 505-513.
  • 5Buchanan, B.B., and Balmer, Y. (2005). Redox regulation: a broadening horizon. Annu. Rev. Plant Biol. 56, 187-220.
  • 6Collin, V., Issakidis-Bourguet, E., Marchand, C., Hirasawa, M., Lancelin, J.M., Knaff, D.B., and Miginiac-Maslow, M, (2003). The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity. J. Biol. Chem. 278, 23747-23752.
  • 7Collin, V., Lamkemeyer, R, Miginiac-Maslow, M., Hirasawa, M., Knaff, D.B., Dietz, K.J., and Issakidis-Bourguet, E. (2004). Characterization of plastidial thioredoxins from Arabidopsis belonging to the new y-type. Plant Physiol. 136, 4088-4095.
  • 8Dai, S., Friemann, R., Glauser, D.A., Bourquin, F., Manieri, W., Schurmann, R, and Eklund, H. (2007). Structural snapshots along the reaction pathway of ferredoxin-thioredoxin reductase. Nature. 448, 92-96.
  • 9de Dios Barajas-Lopez, J., Serrato, A.J., Olmedilla, A., Chueca, A., and Sahrawy, M. (2007). Localization in roots and flowers of pea chloroplastic thioredoxin f and thioredoxin m proteins reveals new roles in nonphotosynthetic organs. Plant Physiol. 145, 946-960.
  • 10Fermani, S., Sparla, F., Falini, G., Martelli, P.L., Casadio, R., Pupillo, P., Ripamonti, A., and Trost, R (2007). The molecular mechanism of thioredoxin regulation in photosynthetic A2B2-glyceraldehyde- 3-phosphate dehydrogenase. Proc. Natl Acad. Sci. U S A. 104, 11109-11104.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部