期刊文献+

基于LSTM-FC模型的充电站短期运行状态预测

Short-Term Operation State Prediction of Charging Station Based on LSTM-FC Model
在线阅读 下载PDF
导出
摘要 公共充电站可用充电桩数量预测对于制定智能充电推荐策略和减少用户的充电排队时间具有重要意义。现阶段充电站运行状态研究通常集中于充电负荷预测,对于站内充电桩占用情况的研究较少,同时缺乏实际数据支撑。为此,基于充电站实际运行数据,提出一种基于长短时记忆(LSTM)网络与全连接(FC)网络结合的充电站内可用充电桩预测模型,有效结合了历史充电状态序列和相关特征。首先,将兰州市某充电站的订单数据转化为可用充电桩数量,并进行数据预处理;其次,提出了基于LSTM-FC的充电站运行状态预测模型;最后,将输入步长、隐藏层神经元数量和输出步长3种参数进行单独测试。为验证LSTM-FC模型的预测效果,将该模型与原始LSTM网络、BP神经网络模型和支持向量回归(SVR)模型进行对比。结果表明:LSTM-FC模型的平均绝对百分比误差分别降低了0.247、1.161和2.204个百分点,具有较高的预测精度。 The prediction of the number of available charging piles in public charging stations is of great significance for the formulation of intelligent charging recommendation strategy and the reduction of users’charging queue time.At present,the research on the operating state of charging stations typically focuses on charging load forecasting,with relatively little attention given to the utilization of charging piles within the stations.Additionally,there is a lack of support from real-world data.Therefore,based on the actual operation data of charging stations,this paper proposed a prediction model of available charging piles in charging stations based on the combination of long short-term memory network(LSTM)and fully connected network(FC),which effectively combines the historical charging state sequence and related features.Firstly,the order data from a specific charging station in Lanzhou was transformed into the number of available charging piles,followed by data preprocessing.Secondly,an LSTM-FCbased predictive model for the operational status of the charging station was proposed.Finally,three parameters—input step size,number of hidden layer neurons,and output step size—were individually tested.To validate the predictive performance of the LSTM-FC model,it was compared with the original LSTM network,BP neural network model,and support vector regression(SVR)model.The results show that the mean absolute percentage error of LSTM-FC model is reduced by 0.247%,1.161%and 2.204%respectively,which shows high prediction accuracy.
作者 毕军 王嘉宁 王永兴 BI Jun;WANG Jianing;WANG Yongxing(School of Traffic and Transportation,Beijing Jiaotong University,Beijing 100044,China;Key Laboratory of Transport In-dustry of Big Data Application Technologies for Comprehensive Transport,Beijing Jiaotong University,Beijing 100044,China)
出处 《华南理工大学学报(自然科学版)》 北大核心 2025年第2期58-67,共10页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金项目(72171019,72301020)。
关键词 LSTM神经网络 全连接网络 电动汽车 充电站运行状态 long short-term memory neural network fully connected network electric vehicles charging station operating status
  • 相关文献

参考文献5

二级参考文献50

  • 1周林,吕厚军.人工神经网络应用于电力系统短期负荷预测的研究[J].四川电力技术,2008,31(6):68-72. 被引量:5
  • 2孙克辉,谈国强,盛利元,张泰山.Lyapunov指数计算算法的设计与实现[J].计算机工程与应用,2004,40(35):12-14. 被引量:14
  • 3关宏志,王鑫,王雪.停车需求预测方法研究[J].北京工业大学学报,2006,32(7):600-604. 被引量:65
  • 4魏连雨,周永亮,张朝清,刘卫铮.改进的停车生成率停车需求预测模型研究[J].河北工业大学学报,2007,36(5):101-106. 被引量:12
  • 5ASHTARI A, BIBEAU E, SHAHIDINEJAD S, et al. PEV charging profile prediction and analysis based on vehicle usage data[J]. IEEE Trans on Smart Grid, 2012, 3(1) : 341-350.
  • 6DARABI Z, FERDOWSI M. Pluwin hybrid electric vehicles: charging load profile extraction based on transportation data [C]//Power and Energy Society General Meeting, July 24 -29, 2011, San Diego, CA, USA: 8p.
  • 7SHAHIDINEJAD S, FILIZADEH S, BIBEAU E. Profile of charging load on the grid due to plug-in vehicles[J]. IEEE Trans on Smart Grid, 2012, 3(1): 135 -141.
  • 8IKEGAMI T, OGIMOTO K, HITOSHI Y, et al. Balancing power supply-demand by controlled charging of numerous electric vehicles [C]// IEEE International Electric Vehicle Conference (IEVC), March 4 8, 2012, Greenville, SC, USA: 8p.
  • 9STEEN D, TUAN L A, CARLSON O, et al. Assessment of electric vehicle charging scenarios based on demographical data [J]. IEEE Trans on Smart Grid, 2012, 3(3): 1457-1468.
  • 10GALUS M D, WARAICH R A, NOEMBRINI F, et al. Integrating power systems, transport systems and vehicle technology for electric mobility impact assessment and efficient control[J]. IEEE Trans on Smart Grid, 2012, 3(2): 934-949.

共引文献485

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部