期刊文献+

沟槽结构β-Ga_(2)O_(3)SBD的设计与仿真

Design and simulation of trenchedβ-Ga_(2)O_(3)Schottky barrier diode
在线阅读 下载PDF
导出
摘要 在肖特基势垒二极管(Schottky barrier diode,SBD)漂移层表面刻蚀沟槽形成金属-绝缘体-半导体(metal-insulator-semiconductor,MIS)结构,抑制镜像力效应并减小器件的反向漏电流,是提升器件反向击穿特性的有效途径。为优化沟槽结构β-Ga_(2)O_(3)SBD的结构参数,文章利用Silvaco Atlas软件仿真不同台面宽度和沟槽深度对器件性能的影响。结果表明,参数优化后(台面宽度1.0μm,沟槽深度0.5μm)的沟槽结构β-Ga_(2)O_(3)SBD开启电压为0.6 V、比导通电阻为1.69 mΩ·cm^(2)、击穿电压为1416 V、功率品质因数为1.19 GW/cm^(2),实现了兼具低开启电压和高击穿电压的良好器件性能。与基础结构SBD和场板结构SBD相比,优化后的器件性能得到显著提升。 The metal-insulator-semiconductor(MIS)structure formed by trenching the drift layer of Schottky barrier diode(SBD)can restrict the image force and reduce the reverse leakage current,which has proved to be effective in improving the reverse breakdown characteristics of the device.To optimize the structure parameters of trenchedβ-Ga_(2)O_(3)SBD,the effect of mesa width and trench depth on the device performance was researched by simulation using Silvaco Atlas.Results revealed that the trenchedβ-Ga_(2)O_(3)SBD with the mesa width of 1.0μm and trench depth of 0.5μm presented the turn-on voltage of 0.6 V,specific on-resistance of 1.69 mΩ·cm^(2),breakdown voltage of 1416 V and power figure of merit of 1.19 GW/cm^(2),showing merits of both low turn-on voltage and high breakdown voltage.The device performance was remarkably improved when compared to that of the regular SBD and field-plated SBD.
作者 杨震 吴春艳 吴霞 高金绪龙 陈强 解光军 YANG Zhen;WU Chunyan;WU Xia;GAO Jinxulong;CHEN Qiang;XIE Guangjun(School of Microelectronics,Hefei University of Technology,Hefei 230601,China)
出处 《合肥工业大学学报(自然科学版)》 北大核心 2025年第2期196-202,231,共8页 Journal of Hefei University of Technology:Natural Science
基金 安徽省自然科学基金资助项目(2208085MF177)。
关键词 β-Ga_(2)O_(3) 肖特基势垒二极管(SBD) 沟槽结构 功率器件仿真 β-Ga_(2)O_(3) Schottky barrier diode(SBD) trenched structure power device simulation
  • 相关文献

参考文献2

二级参考文献8

  • 1[1]Schrder C and Heiland W 1996 Appl.Phys.Lett. 68 1957
  • 2[2]Crofton J and Sriram S 1996 IEEE trans.Elec.Dey. 43 2305
  • 3[3]Zheng L and Joshi R P 1999 J.Appl.Phys. 85 3701
  • 4[4]Bhatnagar M, Baliga B J and Kirk H R 1996 IEEE trans.Elec.Dev. 43 150
  • 5[5]Werner J H and Güttler H H 1991 J.Appl.Phys. 69 1522
  • 6[6]Wu C Y 1980 J.Appl.Phys. 51 3786
  • 7[7]Crofton J and Barnes P A 1991 J.Appl.Phys. 69 7660
  • 8[9]Defives D, Noblanc O and Dua C 1999 IEEE trans.Elec.Dev. 46 449

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部