期刊文献+

广义约束条件下矩阵方程AXB+CX^(T)D=E最佳逼近解的迭代算法

Iterative Algorithm for the Optimal Approximation Solution of Matrix Equations AXB+CX^(T)D=E with Generalized Constraint
在线阅读 下载PDF
导出
摘要 为了计算广义约束条件GX=H下矩阵方程AXB+CX^(T)D=E的最佳逼近解,设计了一种基于梯度投影与搜索方向正交的迭代算法.证明了任意给定一个满足广义约束条件的特殊初始矩阵,通过有限次迭代算法,能够获得广义约束条件下矩阵方程的极小范数最小二乘解,并利用该极小范数最小二乘解计算出最佳逼近解. An iterative algorithm is presented to calculate the optimal approximation solution of the matrix equations AXB+CX^(T)D=E with constraint conditions GX=H.It is proved that given a special initial matrix satisfying the generalized constraints,the minimal norm least squares solution of the matrix equation under the generalized constraints can be obtained by the finite-order iterative algorithm,and the optimal approximation solution can be calculated by using the minimal norm least squares solution.
作者 杨家稳 万鹏 梁金荣 YANG Jiawen;WAN Peng;LIANG Jinrong(Department of Basic Course,Chuzhou Polytechnic,Chuzhou 239000,Anhui China)
出处 《吉首大学学报(自然科学版)》 2025年第1期1-11,共11页 Journal of Jishou University(Natural Sciences Edition)
基金 安徽省高校自然科学重点项目基金(2023AH053087,KJ2018A0839)。
关键词 极小范数最小二乘解 最佳逼近解 迭代算法 梯度投影 minimal norm least squares solution optimal approximation solution iterative algorithm gradient projection
  • 相关文献

参考文献3

二级参考文献31

  • 1袁永新.关于一类线性矩阵方程的对称解[J].工程数学学报,1998,15(3):25-29. 被引量:34
  • 2张忠志,胡锡炎,张磊.线性约束下反Hermitian广义反Hamiltonian矩阵的最佳逼近问题[J].工程数学学报,2004,21(F12):88-92. 被引量:3
  • 3袁永新,戴华.矩阵方程A^TXB+B^TX^TA=D的极小范数最小二乘解[J].高等学校计算数学学报,2005,27(3):232-238. 被引量:16
  • 4Yasuda K, Skelton R E. Assigning controllability and observability Graminans in feedback control[J].J.Guidance Control, 1990,14(5): 878-885
  • 5Fujioka H, Hara S. State covariance assignment problem with measurement noise:a unified approach based on a symmetric matrix equation[J]. Linear Algebra Appl., 1994,203/204: 579- 605
  • 6Chu k.-W. E. Symmetric solutions of linear matrix equation by matrix decompositions[J]. Linear Algebra Appl., 1989,119:35-50
  • 7Ben-Israel A, Greville T N E. Generalized inverse: Theory and Applications. 2nd Edition, NewYork: Springer Verlag, 2003
  • 8Peng Z Y. An iterative method for the least aquares symmetric solution of the linear matrix equation AXB = D. Appl. Math. Comput., 2005, 170:711-723
  • 9Braden H W. The equations A^TX±X^TA = B. SIAM J. Matrix Anal.Appl., 1998,20(2): 295-302
  • 10Stewart G W. Computing the CS-decomposition of a partitioned orthogonal matrix. Numer.Math., 1982,40:297-306

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部