期刊文献+

基于DQN协同进化算法的柔性作业车间能效调度优化

Energy-efficient scheduling optimization of flexible job-shop scheduling based on DQN co-evolutionary algorithm
在线阅读 下载PDF
导出
摘要 为了优化柔性作业车间的系统运行,提升能效水平,以综合能耗最小为目标,以机器选择、速度调整和适时开关机3种节能策略同时实施为手段,建立混合整数线性规划模型,并提出基于深度Q网络的协同进化算法来求解。该算法继承了局部搜索算法问题针对性强、收敛速度快的优势,同时融入协同进化思想,使加工顺序、机器选择和速度等级选择三段子码合作竞争、共同进化;提出基于深度Q网络强化学习的局部搜索算子推荐机制,选配与当前车间运行状态更契合、更有利于节能降耗的局部搜索算子;设计了基于归档集、利用交叉操作的重启策略,推动算法跳出局部最优。实验结果表明,所提算法在能耗指标和稳定性方面显著优于对比算法。 To optimize the systematical operations and improve the energy efficiency of the Flexible Job-shop Scheduling Problem(FJSP),aiming at the minimization of comprehensive energy consumption,three energy-saving measures including machine selection,speed adjustment and timely switching on/off were simultaneously considered to establish a mixed integer linear programming model,and a co-evolutionary algorithm based on Deep Q-Network(DQN)was proposed to solve it.This algorithm inherited the advantages of strong pertinence and fast convergence of local search algorithms.Meanwhile,it incorporated co-evolution,so that the three sub-codes of processing sequence,machine selection and speed selection might cooperate and co-evolve.A local search operator recommendation mechanism based on DQN reinforcement learning was proposed,and hence the selected local search operators were more suitable for the current workshop operating status and were more conducive to reduction of energy consumption.A restart strategy based on archive set and cross operator was designed to push the algorithm to jump out of the local optimum.The experimental results showed that the proposed algorithm was significantly better than the comparison algorithms in terms of energy saving and stability.
作者 閤泰梓 唐秋华 成丽新 XIA Taizi;TANG Qiuhua;CHENG Lixin(Key Laboratory of Metallurgical Equipment and Control Technology,Ministry of Education,Wuhan University of Science and Technology,Wuhan 430081,China;Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering,Wuhan University of Science and Technology,Wuhan 430081,China)
出处 《计算机集成制造系统》 北大核心 2025年第2期411-422,共12页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(52275504)。
关键词 柔性作业车间 能效调度 协同进化算法 算子推荐 强化学习 flexible job-shop scheduling problem energy-efficiency scheduling co-evolutionary algorithm operator recommendation reinforcement learning
  • 相关文献

参考文献7

二级参考文献162

  • 1王思涵,黎阳,李新宇.基于鲸鱼群算法的柔性作业车间调度方法[J].重庆大学学报(自然科学版),2020,43(1):1-11. 被引量:18
  • 2巩敦卫,郝国生,周勇,孙晓燕.分层交互式进化计算及其应用[J].控制与决策,2004,19(10):1117-1120. 被引量:15
  • 3孙晓燕,巩敦卫.变种群规模合作型协同进化遗传算法及其在优化中的应用[J].控制与决策,2004,19(12):1437-1440. 被引量:7
  • 4张超勇,饶运清,刘向军,李培根.基于POX交叉的遗传算法求解Job-Shop调度问题[J].中国机械工程,2004,15(23):2149-2153. 被引量:116
  • 5KACEM I,HAMMADI S,BORNE P.Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems[J].IEEE Transactions on Systems,Man and Cybernetics,Part C:Applications and Reviews,2002,32(1):1-13.
  • 6PEZZELLA F,MORGANTI G,CIASCHETTI G.A genetic algorithm for the flexible job-shop scheduling problem[J].Computers & Operations Research,2008,35 (10):3202-3212.
  • 7TANG J C,ZHANG G J,LIN B B,et al.A hybrid algorithm for flexible job-shop scheduling problem[J].Procedia Engineering,2011,15:3678-3683.
  • 8TEEKENG W,THAMMANO A.A combination of shuffled frog leaping and fuzzy logic for flexible job-shop scheduling problems[J].Procedia Computer Science,2011,6:69-75.
  • 9ZHANG G H,GAO L,SHI Y.An effective genetic algorithm for the flexible job-shop scheduling problem[J].Expert Systems with Applications,2011,38(4):3563-3573.
  • 10SHI Yang,ZHANG Guohui,GAO Liang,et al.A novel initialization method for solving flexible job-shop scheduling problem[C]//Proceedings of International Conference on Computers & Industrial Engineering.Washington,D.C.,USA:IEEE,2009.

共引文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部