摘要
基于GH4742高温合金在应变速率为0.001~1 s^(-1)、变形温度为950~1160℃及高度压下率为60%条件下的等温恒应变速率压缩试验,分析其流动应力行为,并分别构建了合金的Arrhenius方程、支持向量机和GWO-BP网络本构模型。研究结果表明,GH4742高温合金的流动应力曲线在高应变速率、低变形温度下呈现明显的软化现象;随着应变速率的降低和变形温度的升高,流动应力曲线逐渐呈现稳态流动特征。峰值应力和应变补偿Arrhenius模型的相关系数分别为0.993和0.991,平均绝对相对误差分别为8.986%和9.813%。测试样本支持向量机模型的相关系数为0.997,平均绝对相对误差为5.626%;测试样本GWO-BP模型的相关系数为0.997,平均绝对相对误差为5.471%。支持向量机和GWO-BP模型具有更高的预测精度,能更好地描述GH4742高温合金的高温流动行为。
Based on the isothermal constant strain rate compression tests of superalloy GH4742 at strain rates of 0.001-1 s^(-1),deformation temperatures of 950-1160℃,and high reduction rate of 60%,its rheological stress behavior was analyzed,and Arrhenius equation,support vector machine and GWO-BP network constitutive models of the alloy were constructed respectively.The results show that the rheological stress curve of superalloy GH4742 presents a significant softening phenomenon at high strain rates and low deformation temperatures.As the strain rate decreases and the deformation temperature increases,the rheological stress curve gradually shows steady-state flow characteristics.The correlation coefficients of the peak stress and strain compensation Arrhenius models are 0.993 and 0.991,respectively,and the average absolute relative errors are 8.986%and 9.813%,respectively.The correlation coefficient of the test sample support vector machine model is 0.997,and the average absolute relative error is 5.626%.While the correlation coefficient of the test sample GWOBP model is 0.997,and the average absolute relative error is 5.471%.Thus,support vector machine and GWO-BP models have higher prediction accuracy and can better describe the high-temperature rheological behavior of GH4742 superalloy.
作者
冯彦成
王松辉
黎汝栋
奚晓
王文珂
徐东
苏海
葛金锋
Feng Yancheng;Wang Songhui;Li Rudong;Xi Xiao;Wang Wenke;Xu Dong;Su Hai;Ge Jinfeng(Guizhou Anda Aviation Forging Co.,Ltd.,Anshun 561005,China;Guizhou Academy of Sciences,Guiyang 550001,China;Institute of Metal Research,Chinese Academy of Science,Shenyang 110016,China;School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China)
出处
《锻压技术》
北大核心
2025年第1期260-271,共12页
Forging & Stamping Technology
基金
国家重点研发计划资助项目(2022YFB3706904)
国家科技重大专项资助项目(2024ZD0600100)
贵州省高层次创新型人才项目(GCC[2023]098)
贵州省科技计划项目(ZZSG[2024]016)
安顺市科技计划项目(安市科工[2023]1号)。