期刊文献+

Real-Time Facial Expression Recognition on Res-MobileNetV3

在线阅读 下载PDF
导出
摘要 Artificial intelligence,such as deep learning technology,has advanced the study of facial expression recognition since facial expression carries rich emotional information and is significant for many naturalistic situations.To pursue a high facial expression recognition accuracy,the network model of deep learning is generally designed to be very deep while the model’s real-time performance is typically constrained and limited.With MobileNetV3,a lightweight model with a good accuracy,a further study is conducted by adding a basic ResNet module to each of its existing modules and an SSH(Single Stage Headless Face Detector)context module to expand the model’s perceptual field.In this article,the enhanced model named Res-MobileNetV3,could alleviate the subpar of real-time performance and compress the size of large network models,which can process information at a rate of up to 33 frames per second.Although the improved model has been verified to be slightly inferior to the current state-of-the-art method in aspect of accuracy rate on the publically available face expression datasets,it can bring a good balance on accuracy,real-time performance,model size and model complexity in practical applications.
出处 《China Communications》 2025年第3期54-64,共11页 中国通信(英文版)
基金 supported by China Academy of Railway Sciences Corporation Limited(No.2021YJ127).
  • 相关文献

参考文献6

二级参考文献39

  • 1徐全生,李美怡.人脸图像特征点的定位与提取方法的研究[J].沈阳工业大学学报,2007,29(1):90-94. 被引量:11
  • 2Ojala T,Pietikainen M,Harwood D.A comparative study of texture measures with classification based on featured distribution[J]. Pattern Recognition, 1996, 1:51-59.
  • 3Ojala T, Pietikainen M, Maenpaa T.Multi-resolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,7 : 971-987.
  • 4Feng X, Hadid A, Pietikainen M.A coarse-to-fine classification scheme for facial expression recognition[C]//LNCS 3212: Proceedings of Image Analysis and Recognition,ICIAR 2004.[S.l.]: Springer, 2004 : 668-675.
  • 5Feng X, Hadid A, Pietiktiinen M.Facial expression recognition with local binary patterns and linear programming[J].Pattern Recognition and Image Analysis,2005,15 : 546-549.
  • 6Ojala T, Pietikaine M, Harwood D.A comparative study of texture measures with classification based on featured distributions[J]. Pattern Recognition, 1996,29 : 51-59.
  • 7Heusch G,Rodriguez Y,Marcel S.Local binary pattems as an image preprocessing for face authentication[C]//Proceedings of the 7th IEEE International Conference on Automatic Face and Gesture Recognition, Southampton, UK.Washington, DC, USA: IEEE Computer Society, 2006,2 : 9-14.
  • 8Ahonen T, Hadid A. Pietiikainen M.Face recognition with local binary pattems[C]//ECCV, 2004 : 469-481.
  • 9Lyons M J,Budynek J,Akamatsu S.Automatic classification of single facial images[J].IEEE Transactions on Pattern Analysis and Machin Intelligence, 1999,21 : 1357-1362.
  • 10Shah C,Gong S,McOwan P W.Robust facial expression recognition using local binary pattems[C]//IEEE International Conference on Image Processing, ICIP2005,2005,2 : 370-373.

共引文献183

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部