摘要
高压直流输电系统在发生直流线路故障时,采用移相重启策略,通过控制整流器移相,快速抑制故障电流,经去游离时间后,解除移相,重启高压直流输电系统。但是,移相重启时,整流器和逆变器都不再消耗无功功率,换流站的交流滤波器将向交流系统提供盈余的无功功率,易导致交流系统过电压;对于对称单极拓扑结构,还将导致非故障线路不能传输有功功率,从而对交流系统产生很大的有功功率冲击。该文提出了直流线路故障穿越重启策略,在直流线路故障时,通过控制故障两端的整流器和逆变器的直流电流相等,在控制故障点电流为零的同时,直流电流穿越故障,继续维持无功功率消耗,避免交流系统产生过电压;对于对称单极拓扑结构,还可以利用故障极续流,继续输送部分有功功率。
When a DC line fault occurs in a high-voltage DC transmission system,a phase-shifting restart strategy is used to quickly suppress the fault current by controlling the rectifier’s phase shift,and after going through the deionization time,the phase shift is released and the high-voltage DC transmission system is restarted.However,when phase-shifting re-starts,both rectifiers and inverters no longer consume reactive power,and the AC filter of the converter station will provide surplus reactive power to the AC system,which is prone to producing overvoltage of the AC system;for the symmetrical single-pole topology,it will also affect the non-faulted line that cannot transmit active power,which will produce a large active power impact on the AC system.This paper proposes a DC line fault ride-through restart strategy.In the event of a DC line fault,by controlling the rectifier and the inverter at both ends of the fault with equal dc currents,the DC current will ride through the fault while controlling the current at the point of fault to be zero,and the reactive power consumption will continue to be maintained to avoid the generation of an overvoltage in the AC system..For the symmetrical single-pole topology,the fault-pole continuation of the current can also be utilized to continue to deliver part of the active power.
作者
卢东斌
黄志岭
龚飞
李海英
卢宇
凌建
LU Dongbin;HUANG Zhiling;GONG Fei;LI Haiying;LU Yu;LING Jian(NR Electric Co.,Ltd.,Nanjing 211102,China;State Grid Jiangsu Electric Power Co.,Ltd.,Nanjing 210024,China)
出处
《高电压技术》
北大核心
2025年第2期828-839,I0023-I0026,共16页
High Voltage Engineering
基金
国家自然科学基金青年基金(51607042)。
关键词
高压直流输电
直流线路故障
移相重启
电流控制
穿越重启
交流过电压
去游离时间
直流电弧
high-voltage direct current(HVDC)transmission
DC-line fault
phase-shifting restart
current control
ride-through restart
AC overvoltage
deionization time
DC arc