摘要
Wire-arc directed energy deposition(WA-DED)has emerged as a transformative technology for producing large-scale metal components owing to its capacity for cost-effective fabrication and suitable deposition rates.Recently,the focus has shifted to the WA-DED of magnesium alloys,which are promising lightweight structural materials in the aerospace transportation and military industries.This article systematically reviews recent advancements in magnesium alloys fabricated using WA-DED.It discusses aspects such as forming quality,internal defects,microstructural evolution,and mechanical properties.Prevalent internal defects such as pores and cracks in WA-DED magnesium alloys are identified and characterized.Additionally,strategies for enhancing the manufacturing quality are elucidated.Furthermore,this article comprehensively explores the underlying mechanisms of the interplay among process parameters,internal defects,and microstructural heterogeneity.The main objective is to provide insights into and strategies for defect elimination,microstructural homogenization,and property enhancement.Finally,some perspectives are proposed for further progress in the application of WA-DED magnesium alloy components for superior performance.
基金
supported by National Natural Science Foundation of China(Grant Nos.52305331,U20B2031)
China Postdoctoral Science Foundation(Grant No.2022M710298)
Fundamental Research Funds for the Central Universities,China(Grant No.YWF-22-L-607).