摘要
为建立腰椎后路融合内固定术术后感染预测模型,收集了2019年1月—2022年6月于丽水市人民医院行腰椎后路融合内固定术的232例患者的病例资料,采用随机数字法选取50例术后感染患者作为感染组,96例作为非感染组。运用单因素及多因素logistic回归模型筛选出腰椎后路融合内固定术术后感染的危险因素,建立腰椎后路融合内固定术术后感染的Nomogram预测模型。验证结果显示:该预测模型具有良好的区分度、校准度和预测能力,有较高的临床价值,可为患者提供个性化诊治方案,降低术后感染的发生率。
In order to establish a prediction model for postoperative infection after posterior lumbar fusion and internal fixation,this study collected the case data of 232 patients who underwent posterior lumbar fusion and internal fixation at Lishui People’s Hospital from January 2019 to June 2022.It selected 50 patients with postoperative infection as the infected group,and 96 patients as the non-infected group with random numbermethod. The study used logistic regression models of single factor and multiple factors to screen out the riskfactors of postoperative infection after posterior lumbar fusion and internal fixation,and established Nomogramprediction model for postoperative infection after posterior lumbar fusion and internal fixation. After validation,the study showed that the prediction model has good discrimination,calibration and prediction ability,and hashigh clinical value,which can provide personalized diagnosis and treatment for patients and reduce theincidence of postoperative infection.
作者
肖雨乐
魏兴炜
陈瑶
朱悦
王华富
陈陶陶
XIAO Yule;WEI Xingwei;CHEN Yao;ZHU Yue;WANG Huafu;CHEN Taotao(School of Medicine,Lishui University,Lishui 323000,Zhejiang;The First Affiliated Hospital,Lishui University,Lishui 323000,Zhejiang)
出处
《丽水学院学报》
2025年第2期70-77,共8页
Journal of Lishui University
基金
浙江省大学生科技创新活动计划暨新苗人才计划项目“腰椎后路融合内固定术术后感染预测模型的构建”(2022R434A015)。
关键词
预测模型
腰椎后路融合内固定术
术后感染
prediction model
posterior lumbar fusion and internal fixation
postoperative infection