期刊文献+

一类耦合非线性Klein-Gordon方程组解的稳定集和不稳定集 被引量:12

Stable and unstable sets for a nonlinear Klein-Gordon equations
在线阅读 下载PDF
导出
摘要 利用势井理论构造方程utt-Δu + u - | v| ρ+2 | u| ρu =0vtt-Δv + v - | u|ρ+2 | v|ρv =0的初边值问题的稳定集和不稳定集 .证明了当初值属于稳定集时 ,整体弱解存在 ,当初值在不稳定集时 。 For the initial boundary value problem u tt -Δu+u-|v| ρ+2 |u| ρu=0,v tt -Δv+v-|u| ρ+2 |v| ρv=0 the stable and unstable sets for the initial data is defined by menas of the “potential well”theory. If the initial data belongs to the unstable set, the solution blows up in finite time. If the initial data belongs to stable set, the solution is global.
出处 《纯粹数学与应用数学》 CSCD 2002年第3期207-210,共4页 Pure and Applied Mathematics
基金 国家自然科学基金 (10 0 710 74 )
关键词 稳定集 不稳定集 耦合Klein-Gordon方程组 势井 整体解 爆破 coupled Klein-Gordon equations, global solutions, blowup
  • 相关文献

参考文献6

  • 1Segal L. Nonlinear partial differential equations in quantum field theory[J]. Proc. Symp. Appl. Math.A. M.S. 1965,17:210~226.
  • 2Jorgens K. Nonlinear Wave Equations [M]. University of Colorado, Department of Mathematics,1970.
  • 3Makhankov V. Dynamics of classical solutions in integrable systems [J]. Physics Reports, Sect C,1978,35:1~128.
  • 4Miranda M Milla Medeiros L A. On the existence of global solutions of a coupled nonlinear KleinGordon Equations [J]. Funkc. Ekvac. 1987,30:147~161.
  • 5Sattinger D H. On global solutions of nonlinear hyperbolic equaions [J]. Arch. Rational Mech. Anal.1968,30:148~172.
  • 6Tsutsumi M. On solutions of semilinear differential equations in a Hilbert space[J]. Math. Japon.1972,17:173~193.

同被引文献67

引证文献12

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部