期刊文献+

基于抽样测量的高速网络实时异常检测模型 被引量:37

A Real-Time Anomaly Detection Model Based on Sampling Measurement in a High-Speed Network
在线阅读 下载PDF
导出
摘要 实时异常检测是目前网络安全的研究热点.基于大规模网络流量的统计特征,寻找能够评价网络行为的稳定测度,并建立抽样测量模型.基于中心极限理论和假设检验理论,建立网络流量异常行为实时检测模型.最后定义ICMP请求报文和应答报文之间比率的网络行为测度,并实现对CERNET网络ICMP扫描攻击的实时检测.该方法和思路对其他网络安全检测研究具有一定的指导意义. Real-Time anomaly detection is a highlighted topic of network security research in recent years. Based on statistics character of traffic in a large-scale network, the steady metrics that can estimated network behavior are found and a sampling measurement model is presented in this paper. According to the center limited theory and hypothesis test, a real-time detection model on anomaly behavior of network traffic is built. Finally, the network behavior metrics on the ratio between ICMP request packets and reply packets is defined and the ICMP scan attack in the CERNET network is monitored real timely. Method and idea of this model provide some directed sense for other network security detection research.
出处 《软件学报》 EI CSCD 北大核心 2003年第3期594-599,共6页 Journal of Software
基金 Supported by the National Natural Science Foundation of China under Grant No.90104031 (国家自然科学基金) the National High-Tech Research and Development Plan of China under Grant No.2001AA112060 (国家高技术研究发展计划)
关键词 抽样测量 高速网络 实时异常检测模型 网络安全 计算机网络 sampling measurement metric anomaly detection smoothing window high-speed network
  • 相关文献

同被引文献172

引证文献37

二级引证文献212

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部