期刊文献+

充氦气对多波切伦柯夫振荡器工作特性的影响 被引量:2

Effects of He gas filling on multiwave Cerenkov generator operation
在线阅读 下载PDF
导出
摘要  采用PIC模拟方法,研究了具有谐振腔的多波切伦柯夫振荡器在充入不同密度的氦气下工作的物理过程,分析了等离子体产生物理机制及其对微波输出影响。结果表明,等离子体的产生是由于电子束对氦原子的碰撞电离及其雪崩效应引起的。由于电离产生的正离子有利于束的传输和群聚,当在一定范围内增加氦气密度时,可减小微波起振时间,提高束波能量转换效率,但并不改变微波频率;进一步增大气体密度,微波起振时间增大、效率下降,甚至出现脉冲缩短现象。 The operating process of the multiwave Cerenkov generator with a resonant cavity is simulated when being filled with He gas at various density by PIC method. The generation mechanism of the plasma and its effects on the output microwave are analyzed. The results reveal the plasma is produced owing to the collision ionization of the He gas filled in the tube by the relativistic electron beam and its avalanche ionization effect. Due to the improvement of the beam transporting and bunching by theions tunnel, the starting oscillation time can decrease as well as the energy conversion efficiency be enhanced when increasing the He gas density in a certain range; increasing the He gas density further can result in adverse effects, even induce pulse shortening phenomenon.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2003年第3期253-256,共4页 High Power Laser and Particle Beams
基金 国家863计划项目资助课题
关键词 工作特性 氦气 多波切伦柯夫振荡器 PIC方法 雪崩效应 脉冲缩 高功率微波器件 He gas Multiwave Cerenkov generator (MWCG) PIC method Avalanche ionization Pulse shortening
  • 相关文献

参考文献1

二级参考文献8

  • 1Bugaev S P,Kanavets V I, Kurkin M G, et al. Relativistic multiwave Cerenkov generator[J]. Sov Tech Phys Lett, 1983, 9(11):596-597.
  • 2Benford J, Swegle J. High-power microwaves[M]. USA : Artech House Inc, 1992.
  • 3Bugaev S P, Cherepenin V A, Kanavets V I, et al. Relativistic multiwave Cerenkov generators[J]. IEEE Trans Plasma Sci, 1990, 18(3):525-536.
  • 4Pikunov V M. Linear theory of the relativistic superdimensional Cerenkov devices[A]. SPIE[C]. 1993, 2154:359-367.
  • 5Kanavets V I, Nifanov A S, Slepkov A I. Relativistic Multiwave Cerenkov Generator[A]. Proc of 9th International Conference on High Power Particle Beams[C]. Washington DC: NRL, 1992. 211-218.
  • 6Gunin A V, Klimov A I, Korovin S D, et al. Relativistic X-band BWO with 3GW output power[J]. IEEE Trans Plas Sci, 1998, 26(3):326-330.
  • 7Vlasov A N, Ilyin A S, Carmel Y. Cyclotron effects in RBWOs operating at low magnetic fields[J]. IEEE Trans Plas Sci, 1998, 26(3):605-614.
  • 8范菊平,刘国治,陈昌华,宋志敏.带有反射腔的相对论返波管的数值模拟[J].强激光与粒子束,2002,14(1):103-106. 被引量:13

共引文献16

同被引文献19

  • 1肖仁珍,刘国治,林郁正,陈昌华.同轴慢波结构相对论高功率微波产生器理论分析[J].强激光与粒子束,2006,18(2):241-244. 被引量:11
  • 2Swegle J A, Poukey J W, Leifeste G T. Backward wave oscillators with rippled wall resonators: analytic theory and numerical simulation[J]. Phys Fluids, 1985, 28(9):2882-2892.
  • 3Bugaev S P, Cherepenin V A, Kanavets V I, et al. Relativistic multiwave Cerenkov generators[J]. IEEE Trans Plasma Sci, 1990, 18(3):525-536.
  • 4Bugaev S P, Cherepenin V A, Kanavets V I, et al. Investigation of a millimeter-wavelength-range relativistic diffraction generator[J]. IEEE Trans Plasma Sci, 1990, 18(3):518-524.
  • 5Vlasov A N, Shkvaruntes A G, Rodgers J C, et al. Overmoded GW-class surface-wave microwave oscillator[J]. IEEE Trans Plasma Sci, 2000, 28(3):550-560.
  • 6Main W, Carmel Y, Ogura K, et al. Electromagnetic properties of open and closed overmoded slow-wave resonators for interaction with relativistic electron beams[J]. IEEE Trans Plasma Sci, 1994, 22(5):566-576.
  • 7Guo H Z, Carmel Y, Lou W R, et al. A novel highly accurate synthetic technique for determination of the dispersive characteristics in periodic slow wave circuits[J]. IEEE Trans Plasma Sci, 1992, 40(11):2086-2093.
  • 8Gunin A V, Klimov A I, Korovin S D, et al. Relativistic X-band BWO with 3-GW output power[J]. IEEE Trans Plasma Sci, 1998, 26(3):326-329.
  • 9Bratman V L, Denisov G G, Ofitserov M M, et al. Millimeter-wave HF relativistic electron oscillators[J]. IEEE Trans Plasma Sci, 1987, 15(1):2-15.
  • 10刘国治.一种同轴慢波结构相对论高功率微波器件的数值模拟研究[C]//全国第五届高功率微波学术研讨会论文集.2002:26.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部