期刊文献+

Banach空间中关于增生算子方程的迭代法的强收敛定理 被引量:13

STRONG CONVERGENCE THEOREMS OF ITERATION METHODS FOR EQUATIONS INVOLVING ACCRETIVE OPERATORS IN BANACH SPACES
在线阅读 下载PDF
导出
摘要 设X是一实Banach空间,且T:X→X是Lipschitz连续的增生算子.在没有假设limn→∞αn=lim n→∞βn=0之下,本文证明了,Ishikawa迭代序列强收敛到方程x+Tx=f的唯一解,而且还对Ishikawa迭代序列提供了一般的收敛率估计.利用该结果,我们推得,当T:X→X是Lipschitz连续的强增生算子时, Ishikawa迭代序列强收敛到方程Tx=f的唯一解. Let X be an arbitrary real Banach space and T : X→ X be a Lipschitz continuous accretive operator. Under the lack of the assumption that lim n→∞αn= lim n→∞βn = 0, the author proves that the Ishikawa iterative sequence converges strongly to the unique solution of the equation x + Tx = f. Moreover, this result provides a general convergence rate estimate for such a sequence. Utilizing this result, the author implies that if T : X → X is a Lipschitz continuous strongly accretive operator then the Ishikawa iterative sequence converges strongly to the unique solution of the equation Tx = f.
作者 曾六川
出处 《数学年刊(A辑)》 CSCD 北大核心 2003年第2期231-238,共8页 Chinese Annals of Mathematics
基金 高等学校优秀青年教师教学和科研奖励基金 国家自然科学基金(NO.19801023) 上海市教委高校科技发展基金资助的项目.
关键词 任意实Banach空间 增生算子 Ishieawa迭代法 收敛率估计 Arbitrary real Banach space, Accretive operator, Ishikawa iterative process, Convergence rate estimate
  • 相关文献

参考文献15

  • 1曾六川.Lipschitz局部强增殖算子的非线性方程的解的迭代构造[J].应用数学和力学,1995,16(6):543-552. 被引量:12
  • 2曾六川,杨亚立.Banach空间中Lipschitz严格伪压缩映象的迭代逼近[J].数学年刊(A辑),1999,20A(3):389-398. 被引量:13
  • 3Sastry, K. P. R. & Babu, G. V. R., Approximation of fixed points of strictly pseudocontractive mapping on arbitrary closed, convex sets in Banach space [J], Proc. Amer.Math. Soc., 128(2000), 2907-2909.
  • 4Chidume, C. E., An interative process for nonlinear Lipschitzian strongly accretive mapping in Lp spaces [J], J. Math. Anal. Appl., 15(1990), 453-461.
  • 5Chidume, C. E. & Osilike, M. O., Ishikawa iteration process for nonlinear Lipschitz strongly accretive mapping [J], J. Math. Anal. Appl., 192(1995), 727-741.
  • 6Rhoades, B. E., Comments on two fixed point iteration methods [J], J. Math. Anal.Appl., 56(1976), 741-750.
  • 7Martin, R. H., A global existence theorem for autonomous differential equations in Banach space [J], Proc. Amer. Math. Soc., 26(1970), 307-314.
  • 8Morales, C., Pseudocontractive mapping and Leray-Schauder boundary condition [J],Comment. Math. Univ. Carolina, 20(1979), 745-746.
  • 9Reich, S., Constructive techniques for accretive and monotone operators [A], in: Applied Nonlinear Analysis [M], Academic Press, New York, 1979, 335-345.
  • 10Tan, K. K. & Xu, H. K., Iterative solutions to nonlinear equations of strongly accretive operators in Banach spaces [J], J. Math. Anal. Appl., 178(1993), 9-21.

二级参考文献12

  • 1邓磊,丁协平.Lipschitz局部严格伪压缩映象的迭代逼近[J].应用数学和力学,1994,15(2):115-119. 被引量:3
  • 2Tan K K,J Math Anal Appl,1993年,178卷,9页
  • 3Xu H K,Nonlinear Anal,1991年,16卷,1127页
  • 4Weng X,Proc Amer Math Proc,1991年,113卷,727页
  • 5Zeng L C,Appl Math Mech,1995年,16卷,583页
  • 6Deng L,Nonlinear Analysis,1995年,24卷,981页
  • 7Deng L,J Math Anal Appl,1994年,188卷,128页
  • 8Deng L,J Math Anal Appl,1993年,174卷,741页
  • 9Tan K K,J Math Anal Appl,1993年,178卷,9页
  • 10Xu Z B,J Math Anal Appl,1991年,157卷,189页

共引文献19

同被引文献72

引证文献13

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部