摘要
多方保密计算是近年来国际密码学领域的一个研究热点,它使拥有隐私数据的参与者能够共同合作利用这些隐私数据保密地参加运算,同时又不泄露自己的隐私数据,因而使人们能够最大限度地利用隐私数据而不破坏数据的保密性.计算几何问题的多方保密计算是其中的一个重要组成部分.研究几何图形相交问题的解决方案在计算几何的多方保密计算中有重要的意义.本文协议2是用朴素的方法解决了两条直线相交问题的多方保密计算,协议3是用Paillier的同态加密算法研究两条直线相交问题的多方保密计算.首先针对已有的两直线相交问题解决方案效率低的缺点,提出了两个新的解决方案,降低了计算复杂性和通信复杂性.接着在协议3的基础上研究了直线与平面相交问题,提出了该问题的解决方案.还利用模拟范例证明了该文提出的2个问题的多方保密计算方案是安全的.最后,给出了以上协议的计算复杂性和通信复杂性分析.
Secure multiparty computation(SMC) is a focus of the international cryptographic community. Secure multi-party computation makes those participants who have some private data be able to take part in the operation with the private data, while not to reveal their private data, which enable people to maximize the use of private data and does not breach the confidentiality of the data. Secure multiparty computational geometry is an important branch of SMC, and has practical significance in SMC. In this paper, protocol 2 is a simple solution for the problem of the intersection of two straight lines with secure multi-party computation, protocol 3 uses paillier's additively homomorphic encryption to solve the problem of intersection of two private lines, this paper first presents two new schemes to improve the efficiency and the communication complexity of the existing protocols. Then, based on protocol 3, we propose a protocol to privately determine the relationship between a line and a plane. Using the simulation paradigm, we prove that all protocols proposed in this paper are secure. Finally, We analyze the computational complexity and communication complexity.
出处
《密码学报》
CSCD
2016年第1期33-41,共9页
Journal of Cryptologic Research
基金
国家自然科学基金(61272435)
关键词
密码学
多方保密计算
计算几何
同态加密
模拟范例
Cryptography
secure multi-party computation
computational geometry
homomorphic encryption
simulation paradigm