期刊文献+

计算几何问题的多方保密计算 被引量:8

Secure Multi-party Geometry Computation
在线阅读 下载PDF
导出
摘要 多方保密计算是近年来国际密码学领域的一个研究热点,它使拥有隐私数据的参与者能够共同合作利用这些隐私数据保密地参加运算,同时又不泄露自己的隐私数据,因而使人们能够最大限度地利用隐私数据而不破坏数据的保密性.计算几何问题的多方保密计算是其中的一个重要组成部分.研究几何图形相交问题的解决方案在计算几何的多方保密计算中有重要的意义.本文协议2是用朴素的方法解决了两条直线相交问题的多方保密计算,协议3是用Paillier的同态加密算法研究两条直线相交问题的多方保密计算.首先针对已有的两直线相交问题解决方案效率低的缺点,提出了两个新的解决方案,降低了计算复杂性和通信复杂性.接着在协议3的基础上研究了直线与平面相交问题,提出了该问题的解决方案.还利用模拟范例证明了该文提出的2个问题的多方保密计算方案是安全的.最后,给出了以上协议的计算复杂性和通信复杂性分析. Secure multiparty computation(SMC) is a focus of the international cryptographic community. Secure multi-party computation makes those participants who have some private data be able to take part in the operation with the private data, while not to reveal their private data, which enable people to maximize the use of private data and does not breach the confidentiality of the data. Secure multiparty computational geometry is an important branch of SMC, and has practical significance in SMC. In this paper, protocol 2 is a simple solution for the problem of the intersection of two straight lines with secure multi-party computation, protocol 3 uses paillier's additively homomorphic encryption to solve the problem of intersection of two private lines, this paper first presents two new schemes to improve the efficiency and the communication complexity of the existing protocols. Then, based on protocol 3, we propose a protocol to privately determine the relationship between a line and a plane. Using the simulation paradigm, we prove that all protocols proposed in this paper are secure. Finally, We analyze the computational complexity and communication complexity.
出处 《密码学报》 CSCD 2016年第1期33-41,共9页 Journal of Cryptologic Research
基金 国家自然科学基金(61272435)
关键词 密码学 多方保密计算 计算几何 同态加密 模拟范例 Cryptography secure multi-party computation computational geometry homomorphic encryption simulation paradigm
  • 相关文献

参考文献12

  • 1Naor M,Pinkas B.Oblivious Transfer and Polynomial Evaluation. Proceeding of the 31st Annual ACMSymposium on Theory of Computing . 1999
  • 2Goldreich O.Foundations of Cryptography:Basic Applications. . 2004
  • 3Atallah M J,Du Wenliang.Secure multi-party computational geometry. Proceedings of 7th International Workshop on Algorithms and Data Structures(WADS 2001) . 2001
  • 4Dan Bogdanov,Margus Niitsoo,Tomas Toft,Jan Willemson.??High-performance secure multi-party computation for data mining applications(J)International Journal of Information Security . 2012 (6)
  • 5Li Shundong,Wu Chunying,Wang Daoshun,Dai Yiqi.??Secure multiparty computation of solid geometric problems and their applications(J)Information Sciences . 2014
  • 6Shlomi Dolev,Niv Gilboa,Marina Kopeetsky.??Efficient private multi-party computations of trust in the presence of curious and malicious users(J)Journal of Trust Management . 2014 (1)
  • 7罗永龙,黄刘生,荆巍巍,徐维江.空间几何对象相对位置判定中的私有信息保护[J].计算机研究与发展,2006,43(3):410-416. 被引量:44
  • 8吴杰宏,张坡,石祥滨.基于加乘同态与组合函数技术的MA保护研究[J].小型微型计算机系统,2012,33(10):2223-2226. 被引量:4
  • 9Li, Shundong,Wang, Daoshun,Dai, Yiqi.Efficient secure multiparty computational geometry. The Chinese Journal . 2010
  • 10FREDERICK R.Core concept:Homomorphic encryption. Proceedings of the National Academy of Sciences of the United States of America . 2015

二级参考文献21

  • 1赵洋,蓝天,马新新,张凤荔.基于加同态公钥密码体制的两方安全议价协议[J].计算机应用,2006,26(11):2576-2577. 被引量:3
  • 2O. Gotdreich. Secure multl-party computation (manuscript version 1.3). http ://theory. lcs. mit. edu/- oded, 2002.
  • 3A. C. Yao. Protocols for secure computations. In: Proc. 23rd Annual IEEE Symposium on Foundations of Computer Science.Los Alamitos: IEEE Computer Society Press, 1982. 160 - 164.
  • 4C. Cachin. Efficient private bidding and auctions with an oblivious third party. In: Proe. 6th ACM Conf. Computer and Communications Security. New York: ACM Press, 1999. 120-127.
  • 5A. C. Yao. How to generate and exchange secrets. In; Proe.27th IEEE Symposium on Foundations of Computer Science, Los Alamitos: IEEE Computer Society Press, 1986. 162- 167.
  • 6O. Goldreich, S. Micali, A. Wigderson. How to play any mental game. In: Prec. 19th Annual ACM Symposium on Theory of Computing. New York: ACM Press, 1987. 218-229.
  • 7S. Goldwasser. Multi-party computations: Past and present, In:Proc. 16th Annual ACM Symposium on Principles of Distributed Computing. New York: ACM Press, 1997. 1 -6.
  • 8Mikhail J. Atallah, Wenliang Du. Secure muhi-party computational geometry. In: Lecture Notes in Computer Science 2125. Berlin: Springer, 2001. 165-179.
  • 9J.Vaidya,C.Clifton.Privacy preserving association rule mining in vertically partitioncd data.In:Proc.8th ACM SIGKDD Int'l Conf.Knowledge Discovery and Data Mining.New York:ACM Press,2002.639-644.
  • 10I. Ioannidis, A. Grama, M. Atallah. A secure protocol for computing dot-products in clustered and distributed environments,In:Proc.2002 Int'l Conf.Paralel Processing.Los Alamitios:IEEE Computer Society Press,2002.379-384.

共引文献45

同被引文献38

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部