期刊文献+

框架下的不规则采样定理 被引量:1

Irregular Sampling Theorem on the Frame
在线阅读 下载PDF
导出
摘要 从空间V0 的框架出发 ,找出该空间的尺度函数 ,把框架转化成Riesz基 ,从而做框架下的不规则采样定理就转化为在Riesz基下做不规则的采样定理 ,或者说Riesz基下的不规则采样定理在一定的条件下可推广到框架下去。该定理可用于数字信号处理领域。 From the space V 0 , the scaling function of it is found. It is possible to transform the frame of V 0 into Riesz base of it (of course, the orthogonal bases are also Riesz bases),so that the irregular sampling theorem on the frame is changed into the one on the Riesz bases, in other words, the irregular sampling theorem on the Riesz bases is extend onto the frame. The irregular theorem on the frame can be used to the signal process.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第6期119-120,132,共3页 Journal of Chongqing University
基金 教育部"留学回国人员科研启动基金"资助项目 (教外司留 [2 0 0 2 ] 2 47号 ) 重庆大学"骨干教师资助计划"资助项目
关键词 对偶 框架 RIESZ基 不规则采样 数字信号处理 dual frame riesz bases irregular sample
  • 相关文献

参考文献12

  • 1王桥.可分辨信号空间理论Ⅱ.信号重构[J].武汉大学学报(自然科学版),1997,43(1):13-20. 被引量:1
  • 2王桥.可分辨信号空间理论 Ⅰ.采样定理[J].武汉大学学报(自然科学版),1996,42(1):6-10. 被引量:1
  • 3DAUCHEIES I. Ten Lectures on Wavelets [ M ]. Philadelphia:SIAM, 1992.
  • 4MEYER Y. Ondelettes et Operaterurs[M].Pairs:Hermonn,1990
  • 5FOLLAND G B. Harmonic Analysis in Phase Space[ M].New jersey: Princeton Univ Press, 1989.
  • 6SIMONCELLI E P. Shiftable Mulfiscale Transforms [ J ]. IEEE.Trans on Inform Theory,1992,38:881 - 884.
  • 7DAUBECHIES I. The Wavelet Transforms, Time -frequency Localization and Signal Analysis [ J ]. IEEE Trans Inform Theory, 1990, 36:961 -1005.
  • 8MEYER Y. Wavelets:Algorithms and Application[M]. Philadelphia: SIAM, 1993.
  • 9FEFFESMAN C L. The Uncertainty Principle [ J ]. Bull AMS,1983,9(2) :129 -206.
  • 10WIGNER E. On the Quantum Correction for Thermodynamic Equilibrum[ J ]. Phys Rev, 1982,40:749 - 759.

二级参考文献7

  • 1李衍达,信号重构理论及其应用,1991年
  • 2王桥
  • 3王桥,J Phys A,1996年,29卷,2257页
  • 4王桥,武汉大学学报,1996年,42卷,1期,6页
  • 5李衍达,信号重构理论及其应用,1991年
  • 6王桥,Appl Comp Harmonic Anal
  • 7王桥,Wuhan Univ J Nat Sci,1997年,2卷,1期

同被引文献9

  • 1DENG Bing,TAO Ran,WANG Yue.Convolution theorems for the linear canonical transform and their applications[J].Science in China(Series F),2006,49(5):592-603. 被引量:22
  • 2薛健,袁保宗.临界抽样Gabor展开的非局部性分析[J].电子学报,1996,24(12):100-103. 被引量:2
  • 3I Daubechies.Ten Lectures on Wavelets[M].SIAM,Philadelpha,1992
  • 4Bultan A,Akansu A N.Frames in rotated time-frequency planes[A].In Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP)[C].AZ:Phoenix,1999.1353-1356.
  • 5Bultan A.A four-parameter atomic decomposition of chirplets[J].IEEE Trans.Signal Processing,1999,47(3):731-745.
  • 6H M Ozaktas,Z Zalevsky,M A Kutay.The Fractional Fourier Transform with Applications in Optics and Signal Processing[M].John Wiley & Sons,2001.
  • 7R J Duffin,A C Shaffer.A class of non-harmonic Fourier series[J].Trans Amer Math Soc,1952,(72):341-366.
  • 8Soo-Chang Pei,Jian-Jiun Ding.Relations between fractional operations and time-Frequency distributions,and their applications[J].IEEE Trans Signal Processing,2001,49(8):1638-1655.
  • 9刘立祥,谢剑英,王明中.利用框架理论对信号进行重建[J].通信技术,2002,35(4X):1-2. 被引量:1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部