期刊文献+

基于提升框架的传统小波研究 被引量:2

Traditional Wavelet Research Based on Lifting Scheme
在线阅读 下载PDF
导出
摘要 提升框架的核心思想是通过有限步预测和更新来构造小波滤波器。由于传统小波的多相矩阵可以分解为多个矩阵的乘积,本文从原理上说明了这些矩阵可以看作是预测算子和更新算子,并给出了具体例子。在例子中,把小波分解变换与重建交换表示成提升框架的形式,说明了提升框架对传统离散小波变换具有包容性。 The key idea of the lifting scheme is constructing wavelet filters by several predict operators and update operators. As we know that the polyphase matrix can be factored into finite matrixes, the principle of these matrixes being regarded as the predict operators and update operators is discussed in this paper. And examples are given. The decomposition transform and reconstruction transform are expressed in the lifting scheme. So the traditional and discrete wavelet can be included by the lifting scheme.
出处 《信号处理》 CSCD 2003年第3期194-198,共5页 Journal of Signal Processing
基金 教育部"跨世纪优秀人才培养计划项目"基金 国家自然科学基金(60172037)
关键词 信号处理 数学分析 滤波器 小波 提升框架 多分辨率分析 lifting scheme predict operator update operator
  • 相关文献

参考文献23

  • 1M.Vetterli and C.Herley. Wavelets and filter bands:Theory and design. IEEE Trans. Acoust. Speech Signal Process., 40(9):2207-2232,1992.
  • 2W.Sweldens. The lifting scheme: A custom-design construction of biorthogonal wavelets. Journal of Appl.And Comput. Harmonic Analysis, 3(2): 186-200, 1996.
  • 3G.Deslauriers and S.Dubuc. Interpolation dyadique. In fractals, dimension non et applications, pages 44-55.Masson, Paris, 1987.
  • 4I. Daubechies and W. Sweldens. Factoring wavelet transforms into lifting steps. J.Fourier Anal. Appl., 4:247-269, 1998.
  • 5J.M.Combes, A.Grossmann, and Ph. Tchamitchian,editors. Wavelets: Time-Frequency Methods and Phase Space. Inverse problems and theoretical imaging.Springer-Verlag, New York, 1989.
  • 6I.Daubecifies, A.Grossmann, and Y.Meyer. Painless nonorthogonal expansions. J. Math. Phys., 27(5): 1271-1283, 1986.
  • 7M.J.T.Smith and R.P.Barnwell. Exact reconstruction techniques for tree-structured subband coders. IEEE Trans. Acoust. Speech Signal Process., 34 (3): 434-441,1986.
  • 8A.Grossmann and J.Morlet. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal., 15(4):723-736,1984.
  • 9P.P.Vaidyanathan and P.-Q.Hoang. Lattice structures for optimal design and robust implementation of two-band perfect reconstruction QMF banks. IEEE Trans. Acoust.Speech Signal Process., 36:81-94,1988.
  • 10M.Vetterli. Filter banks allowing perfect reconstruction.Signal Process., 10:219-244,1986.

同被引文献16

  • 1樊友平,陈允平,柴毅,黄席樾,韩逢庆,高波.火箭飞行实时测量数据的小波滤波快速算法[J].数据采集与处理,2004,19(4):395-400. 被引量:6
  • 2Shih-Hsuan Chiu,Chuan-Pin Lu. Noise separation of the yarn tension signal on twister using FastICA [J]. Mechanical Systems and Signal Processing, 2005( 19 ): 1326-1336.
  • 3王盟 韩其睿.基于整型小波变换的SPIHT图象压缩算法.科技信息(学术版),2006,(7):213-214.
  • 4S Mallat. A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Trans onPAMI, 1989; 11 (7) :674~693.
  • 5D L Donoho. De-noising by soft-thresholding[J].IEEE Transactions on Information Theory, 1995 ;41 (3) :613~627.
  • 6R R Coifman,L Donoho.Translation-invariant de-noising[J].Lecture Notes in Statistics, 1995; 103:125~150.
  • 7H Guo.Theory and Applications of the Shift-Invariant,Time-Varying and Undecimated Wavelet Transforms[DJ.Master′s thesis. George RBrown School of Engineering,Rice University,1995.
  • 8W Sweldens.The lifting scheme:A custom-design construction of biorthogonal wavelets[J]Journal of Appl And Comput Harmonic Analysis, 1996;3(2): 186~200.
  • 9W Swaldens. The lifting scheme:A construction of second generation wavelets[J].SIAM Journal of Mathematical Analysis, 1998; 29 ( 2 ):511~546.
  • 10W Sweldens.The lifting scheme:A new philosophy in biorthogonal wavelet construetions[C].In:Proc SPIE 2569,Wavelet Applications in Signal and Image Processing Ⅲ, 1995:68~79.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部