期刊文献+

样条虚边界元法的数值稳定性与误差估计 被引量:3

Numerical Stability and Error Estimate of the Spline Fictitious Boundary Element Method
在线阅读 下载PDF
导出
摘要 样条虚边界元法是针对传统间接奇异边界元法存在的问题而提出的一种半解析半数值方法 .它既保留了边界元法的优点 ,也避开了求解奇异积分方程的问题 ,在试函数和权函数的选取方面也作出了改进 ,具有精度好、效率高等优点 .本文主要针对弹性力学平面问题样条虚边界元法在数值稳定性与误差估计方面的问题展开讨论 ,获得了虚边界的布设规律及方法误差的直观度量 。 The spline fictitious boundary element method (SFBEM) is a modified method to the conventional indirect singular boundary element method. SFBEM not only retains the advantages of boundary element method, but also avoids solving singular integral equations. Improvements in the choice of trial functions and weight functions have also been made in SFBEM. High accuracy and efficiency have been observed in the method. This paper presents the investigation of numerical stability and error estimate of SFBEM in elastic plane problems. Several conclusions regarding the above issues are obtained in this paper, which lays a solid foundation for its practical application.
作者 苏成 郑淳
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第8期53-56,共4页 Journal of South China University of Technology(Natural Science Edition)
关键词 边界元法 样条函数 样条虚边界元法 数值稳定性 误差估计 boundary element method spline functions spline fictitious boundary element method numerical stability error estimate
  • 相关文献

参考文献6

二级参考文献29

共引文献20

同被引文献13

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部