期刊文献+

调制故障源信号盲分离技术 被引量:4

Blind Separation Technique of Modulatory Fault Source Signal
在线阅读 下载PDF
导出
摘要 应用盲信号分离技术 ,通过模拟实际故障诊断中传感器所测信号的噪声干扰情形 ,较好地实现了调制故障源信号与外加干扰的分离 ,突出了源信号中重要的调制特征。另外 ,对实际多维轴承故障信号的盲分离实验结果 ,也暗示了盲源分离技术在机械状态监测与故障诊断中的应用价值。
出处 《轴承》 北大核心 2003年第10期25-28,共4页 Bearing
基金 浙江省自然科学基金 (5 0 0 1 0 0 4) 国家自然科学基金 (5 0 2 0 5 0 2 5 )
  • 相关文献

参考文献6

  • 1张贤达.通讯信号处理[M].北京:清华大学出版社,1998..
  • 2Pierre Comon.Independent component analysis,A mew concept?[J].Signal Processing, 1994,(36):287-314.
  • 3Fabry P,Serviere Ch.Blind separation of noisy harmonic signals using only second order statistics[M].LIS-ENSIEG,BP 46,38402 Saint-Martin d heres Cedex,FRANCE.
  • 4Cardoso J F,Souloumiac A.Blind beamforming for non -Gaussian signals[J].IEE Proceedings-F,1993,140(6).
  • 5Hoang-Lan Nguyen Thi,Christian Jutten.Blind source separation for corrvolutive mixtures[J].Signal Processing,1995,(45):209 - 229.
  • 6This dataset was acquired in the Delft“Machine diagnostics by neural networks”-project with help from*Landustrie Sneek b v,The Netherlands* SKF Condition Monitoring b v,The Netherlands,and can be downloaded freely at the following web-address:http://www.ph.th.tudelft.nl/~ypma/mechanical.html(c)12-08-99.Pattern Recognition Group,Delft University of Technology.

同被引文献15

  • 1胥永刚,张发启,何正嘉.独立分量分析及其在故障诊断中的应用[J].振动与冲击,2004,23(2):104-107. 被引量:46
  • 2李舜酩.转子振动故障信号的盲分离[J].航空动力学报,2005,20(5):751-756. 被引量:30
  • 3Juteen C,Herault J.Blind separation of sources,part 1:An adaptive algorithm based on neuromimetic structure.Signal processing,1991,24:1-10
  • 4Nabil Charkani,Yannick Deville.Self-adaptive separation of convolutively mixed signals with a recursive structure.Part I:Stability analysis and optimization of asymptotic behaviour.Signal Processing,1999,73:225-254
  • 5Hoang-Lan Nguyen Thi,Christian Jutten.Blind source separation for convolution mixtures.Signal Processing,1995,45:209-229
  • 6Gelle G,Colas M,Delaunay G.Blind soures separation applied to rotating machines monitoring by acoustical and vibrations analysis.Mechanical Systems and Signal Processing,2000,14(3):427-442
  • 7G.GeUe, M. Colas and G. Delaunay. Blind sources separation applied to rotating machines monitoring by acoustical and vibrations analysis [J]. Mechanical Systems and Signal Processing 2000, 14(3): 427-442.
  • 8R.Linsker. Local synaphc leaming rules suffice to maximize mutual information in a linear network[J]. Neural Computation, 1992, 4(3): 491-702.
  • 9王晶,陈果,郝腾飞.强噪声背景下的滚动轴承故障微弱信号检测新方法[J].轴承,2012(3):42-46. 被引量:5
  • 10吴军彪,陈进,伍星.基于盲源分离技术的故障特征信号分离方法[J].机械强度,2002,24(4):485-488. 被引量:34

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部