期刊文献+

基于核Fisher判决分析的脸谱识别新方法 被引量:3

A New Face Recognition Method Based on Kernel Fisher Discriminant Analysis
在线阅读 下载PDF
导出
摘要 本文提出一种新的基于核Fisher判决分析(简称KFDA)的脸谱识别方法。即首先应用KFDA提取脸谱特征,然后,进行脸谱识别。利用标准的AT&T脸谱数据库对KFDA特征提取方法和PCA、FDA以及ICA特征提取方法进行比较,最后使用线性支持向量机(简称SVM)进行分类和识别,实验结果显示基于KFDA特征提取脸谱识别方法的识别率明显优于其它三种脸谱识别方法的识别率。 A new face recognition method is proposed. In this method, Kernel Fisher Discriminant Analysis (KFDA) is combined with Linear Support Vector Machine (SVM). KFDA is a new non-linear technique for extracting features. KFDA-based face recognition method is tested and compared with PCA, FDA and ICA-based face recognition methods using the same publicly available AT&T database. Experiment results indicate that the performance of KFDA-based face recognition method is superior to the others.
出处 《电路与系统学报》 CSCD 2003年第5期57-61,共5页 Journal of Circuits and Systems
关键词 核Fisher判决分析 支持向量机 线性Fisher判决分析 主分量分析 独立分量分析 Kernel Fisher Discriminant Analysis (KFDA) Support Vector Machine (SVM) Linear Fisher Discriminant Analysis(FDA) Principal Component Analysis(PCA) Independent Component Analysis(ICA)
  • 相关文献

参考文献14

  • 1Bscholkopf A J Smola K R Müller.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Comput.,1998,10:1299-1319.
  • 2Peter N Belhumeur, Joao P Hespanha, David J Kriegman. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997-07, 19 (7): 711-720.
  • 3Vapnik V N. The Nature of Statistical Learning Theory [M]. New York: Springer-Verlag, 1995.
  • 4Sch6lkopf B, Burges C J C, Smola A J. Advances in Kernel Methods-Support Vector Learning [M]. Cambridge MA: MIT Press, 1999.
  • 5Mika S, Ratsch G, Weston J, Sch61kopf B, Miiller K R. Fisher discriminant analysis with kernels [A].in: Neural Networks for Signal Processing IX [C]. Hu Y H, J Larsen, E Wilson, S Douglas, Ed. Piscataway, NJ: IEEE, 1999: 41-48.
  • 6Mika S, Ratsch G, Weston J, et al. Invariant feature extraction and classification in kernel spaces [A]. In: Advances in Neural Information Processing Systems 12[C]. S A Solla, Leen T K, K R Miiller, Eds. ambridge, MA: MIT Press, 2000: 526-532.
  • 7Scholkopf B, Smola A J, Miiller K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Comput, 1998, 10: 1299-1319.
  • 8Smola A J. Learning with kernels[D]. Ph D dissertation, Technische Universitat Berlin, 1998.
  • 9Bartlett MS. Face Image Analysis by Unsupervised Learning and Redundancy Reduction [D]. Ph D dissertation, 1998.
  • 10Muller K, Mika S, Ratsch G, Tsuda K, Scholkopf B. An Introduction to Kernel-Based Learning Algorithms [J]. IEEE Trans on NeuralNetworks, 2001-03, 12(2): 181-201.

同被引文献18

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部