期刊文献+

一种改进粒子群优化算法 被引量:39

A Modified Particle Swarm Optimization Algorithm
在线阅读 下载PDF
导出
摘要 作为群集智能的代表性方法之一,粒子群优化(PSO)算法通过粒子之间的合作与竞争以实现对多维复杂空间的高效搜索。提出了一种改进粒子群优化(MPSO)算法。MPSO同时采用局部模式压缩因子方法和全局模式惯性权重方法以获得相对较高的性能。针对PSO算法可能出现的停滞现象,MPSO引入了基于全局信息反馈的重新初始化机制。数值仿真结果显示了该算法的有效性。 As a representative method of swarm intelligence, particle swarm optimization (PSO) is an algorithm for searching the multidimensional complex space efficiently through cooperation and competition among the individuals in a population of particles. A modified PSO (MPSO) algorithm is proposed. The MPSO employs local version constriction factor method and global version inertia weight method simultaneously to achieve relatively high performance. To avoid the possible occurring of stagnation phenomenon in the PSO algorithm, the re-initialization mechanism based on the global information feedback is introduced in the MPSO. Numerical examples show the effectiveness of the proposed algorithm.
出处 《电路与系统学报》 CSCD 2003年第5期87-91,共5页 Journal of Circuits and Systems
关键词 进化计算 群集智能 粒子群优化 evolutionary computation swarm intelligence particle swarm optimization
  • 相关文献

参考文献14

  • 1于歆杰,王赞基.应用自适应指数比例变换的适应值共享遗传算法[J].系统工程理论与实践,2002,22(2):24-28. 被引量:3
  • 2Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour [J]. Nature, 2000, 406(6): 39-42.
  • 3Bonabeau E, Dorigo M, Theraulaz G. Swarm intelligence: from natural to artificial systems [M]. New York: Oxford Univ Press, 1999.
  • 4Eberhart R C, Shi Y. Particle swarm optimization: developments, applications and resources [A]. Proc 2001 Congress Evolutionary Computation [C]. Piscataway, NJ: IEEE Press, 2001: 81-86.
  • 5Kennedy J, Eberhart R C, Shi Y. Swarm intelligence [M]. San Francisco: Morgan Kaufmann Publishers, 2001.
  • 6Kennedy J, Eberhart R C. Particle swarm optimization [A]. Proc. IEEE Int. Conf. Neural Networks [C]. Piscataway, NJ: IEEE Press, 1995,1942-1948.
  • 7Parsopoulos K E, Vrahatis M N. Particle swarm optimization method for constrained optimization problems [A]. Intelligent Technologies: from Theory to Applications [C]. Amsterdam: IOS Press, 2002. 214-220.
  • 8Parsopoulos K E, Vrahatis M N. Recent approaches to global optimization problems through particle swarm optimization [J]. Natural Computing, 2002, 1(2-3): 235-306.
  • 9Dautenhahn K. Book review: swarm intelligence [J]. Genetic Programming and Evolvable Machines, 2002, 3(1): 93-97.
  • 10Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization [A]. Proc 1999 Congress Evolutionary Computation [C]. Piscataway, N J: IEEE Press, 1999:1951-1957.

二级参考文献12

  • 1[1]Goldberg D E.Genetic Algorithms in Search, Optimization, and Machine Learning[M].New York: Addison-Wesley, 1989.
  • 2[2]Mahfoud S W.Genetic drift in sharing methods[A].In Proc.1st IEEE Conf.Evolutionary Computation[C].Piscataway, NJ: IEEE Press, 1994.67-72.
  • 3[3]Kreinovich V, Quintana C, Fuentes O.Genetic algorithms: what fitness scaling is optimal?[J].Cyber and Sys: An Int J, 1993, 24:9-26.
  • 4[4]Darwen P, Yao X.A dilemma for fitness sharing with a scaling function[A].In Proc 2nd.IEEE Conf.Evolutionary Computation[C].Piscataway, NJ: IEEE Press, 1995.166-171.
  • 5[5]Sareni B, Krahenbuhl L.Fitness sharing and niching methods revisited[J].IEEE Trans on Evol Comput, 1998, 2(3): 97-106.
  • 6[6]Michalewicz Z.Genetic Algorithms + Data Structures = Evolution Programs[M].Berlin: Springer-Verlag, 1992.
  • 7[7]Leclerc F, Porvin J Y.A fitness scaling method based on a span measure[A].In Proc.2nd.IEEE Conf.Evolutionary Computation[C].Piscataway, NJ: IEEE Press, 1995.561-565.
  • 8[8]Deb K, Horn J, Goldberg D E.Multimodal deceptive functions[J].Complex Systems, 1993, 7(2): 131-153.
  • 9[9]Goldberg D E, Richardson J.Genetic algorithms with sharing for multimodal function optimization[A].In Proc.2nd.Int.Conf.Genetic Algorithms and Their Applications[C].Hillsdale, NJ: Lawrence Erlbaum, 1987, 41-49.
  • 10[10]Goldberg D E, Deb K, Horn J.Massive multimodality, deception, and genetic algorithms[A].In Proc.2nd.Conf.Parallel Problem Solving from Nature[C].Amsterdam: North-Holland, 1992.15-25.

共引文献2

同被引文献234

引证文献39

二级引证文献552

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部