期刊文献+

聚合物锂离子电池不同化成电压下产生气体的研究 被引量:11

Study on the Gas Generation in Different Charging Voltage during Formation Process in Polymer Lithium-ion Battery
在线阅读 下载PDF
导出
摘要  应用气相色谱方法初步探讨了聚合物锂离子电池在首次充电过程中于不同化成电压下产生气体的原因和机理.结果表明,当电池电解液采用1mol/LLiPF6-EC~DMC~EMC(三者体积比1∶1∶1)时,于化成电压小于2.5V下,产生的气体主要为H2和CO2等;化成电压为2.5V时,电解液中的EC开始分解,电压在3.0~3.5V的范围内,由于EC的还原分解,产生的气体主要为C2H4;而当电压大于3.0V时,由于电解液中DMC和EMC的分解,除了产生C2H4气体外,CH4,C2H6等烷烃类气体也开始出现;电压高于3.8V后,DMC和EMC的还原分解成为主反应.此外,当化成电压处于3.0~3.5V之间,化成过程中产生的气体量最大;电压大于3.5V后,由于电池负极表面的SEI层已基本形成,因此,电解液溶剂的还原分解反应受抑制,产生的气体的数量也随之迅速下降. The gases of polymer lithium_ion battery(PLI) generated under different voltages during the first charging process were examined by means of gas chromatography (GC), and the mechanism of the gas generation was discussed. The electrolyte used in batteries was 1 mol/L LiPF6_EC~DMC~EMC=1∶1∶1(in volume). The results showed that when the charging voltage is less than 2.5 V, the main component of generated gases are H2 and CO2, and when the charging voltage is 2.5 V, EC begins to decompose. Due to the decomposition of EC, the main generated gas is C2H4 when the charge voltages between 3.0 V and 3.5 V. As the voltage is higher than 3.0 V, the generated gases composed of C2H4 as well as CH4 and C2H6.The later are caused by the decomposition of DMC and EMC. When the charging voltage is higher than 3.8V, the decomposition of DMC and EMC becomes dominant. Furthermore, when the voltages are between 3.0 V and 3.5 V, the volumes of generated gases are the most. Since the solid electrolyte interface (SEI) on the surface of carbon electrode has been formed, while the charging voltage higher than 3.5 V, the decomposition of the electrolyte slowed down and then restrained, and the volume of the generated gases decreased quickly.
出处 《电化学》 CAS CSCD 2003年第4期387-392,共6页 Journal of Electrochemistry
基金 国家重点基础研究发展规划 (2 0 0 2CB2 1 1 80 4) 科技部中小企业技术创新基金 (2 0 0 1 3 51 60 1 1 1 86)资助
关键词 聚合物锂离子电池 化成电压 气体析出 气相色谱方法 二次电池 Polymer lithium-ion battery, Formation, Gas generation, SEI
  • 相关文献

参考文献2

二级参考文献17

  • 1Yoda S, Ishihara K, The advent ofbattery-based societies and the global environment in the 21st century[J], Journal ofPower Sources, 1999,81 - 82:162- 169.
  • 2Aurbach D,Markovsky B,Weissman I, Levi E, Ein-Eli Y, On the correlation betwesnsurface chemistry and porformance of graphite negative electrodes for Li ion batteries[J]. Electrochim Acta, 1999,45:67.
  • 3Paulsen J M, Dahn J R, Studies of the layered manganese bronzes, Na2/3[Mnl- xMx]O2with M=Co, Ni, Li, and Li2/3 [Mnl -xMx]O2 prepared byion-exchange[J], Solid State Ionics, 1999,126:3.
  • 4Axora P, White R E, Doyle M, Capacity Fade Mechanisms and Side Reactions inLithium-lon Batteries[J] ,J Eleetrochem Soc, 1998,145:3647.
  • 5Jean M, Chausse A, Messina R, Composition and Stability of the Passivating Layex ona Petroleum Coke in PC/EC/DMC-LiCF3SO3 Electrolyte [J], TheEleetrochemical Society Meeting Abstracts, Vol. 97 - 2,Paris, France, Aug. 13-20,1997.
  • 6Aurbach D, Ein-Eli Y, Chusid O, Carmeli Y, BabaiM, Yamin H, The Correlation Betweenthe Surface Chemistry and the Pefformance of Li-Carbon Intercalation Anodes forRechargesble " Rocking Chair" Type Batteries[J] ,J Electrochem Soc,1994,141:603.
  • 7Pistoia G, Antonini A, Rosati R, Zane D. Storage characteristics of cathodes forLi-ian batteries[J], Eleehochim. Acta, 1996,41:2683
  • 8Darling R, Newman J, Modeling a Porous Intercalation Electrode with TwoCharacteristic Particle Sizes[J] ,J Eleetrochem Soc, 1997,144:4201.
  • 9C ummow R J, de Keek A, and Thackeray M M, Improved capacity retention in rechargeable 4V lithium/litinum-maganese oxide (spinel)cells[J], Solid State Ionics, 1994,69:59.
  • 10Amatueei G G, Tarascon J M, Klien L C, Cobalt dissolution in LiCoO2-basodnon-aqueous rechargeable batteries[J], Solid State Ionics,1996, 83:167.

共引文献49

同被引文献46

引证文献11

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部