摘要
该文考虑了带有耗散项的广义对称正则长波方程解的长时间性态 .证明了周期初值问题整体吸引子的存在性 ,用关于时间的一致先验估计获得整体吸引子的 H
The long time behavior of solutions of the generalized symmetric regularized long wave equations with dissipation term is considered. The existence of global attractors of the periodic initial value problem is proved, and the estimates of the upper bounds of Hausdorff and fractal dimensions for the global attractors are obtained by means of uniform a priori estimates for time.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2003年第6期745-757,共13页
Acta Mathematica Scientia
基金
国家自然科学基金 ( 10 2 710 34 )资助项目
关键词
对称正则长波方程
周期初值问题
整体吸引子
HAUSDORFF维数
分形维数
Symmetric regularized long wave equation
Periodic initial value problem
Global attractors
Hausdorff dimension
Fractal dimension