期刊文献+

差分和加权Mel倒谱混合参数应用于说话人识别 被引量:14

Mixed Parameters of Differential and Weighted Mel Cepstrum Used in Speaker Recognition
在线阅读 下载PDF
导出
摘要 说话人识别是信息技术和生物学的新一代身份验证方式,在说话人识别的研究中,特征参数的提取直接影响到识别系统最终的识别效率.通过对Mel频率倒谱系数特征参数进行分析研究,基于Mel频率倒谱系数改进加权函数,将体现个人语音特性的加权特征参数与反映语音帧间变化的差分Mel频率倒谱系数进行维度筛选,再进行参数混合.实验结果表明,通过改进加权函数提取得到的特征参数与差分Mel频率倒谱系数的混合参数在矢量量化的说话人识别系统中,码本容量为16和32时可以达到100%的识别率. In the speaker recognition system,the extraction of characteristic parameters directly affects the final recognition efficiency.The study analyzed Mel frequency cepstrum coefficient characteristic parameter,improved the function of weighted Mel frequency cepstrum coefficient,and mixed the improved weighted Mel frequency cepstrum coefficient reflecting individual voice characteristics and differential Mel frequency cepstrum coefficient reflecting the voice changes between frames.The experimental results show that the mixed parameters of weighted Mel frequency cepstrum coefficient from the improved function and differential Mel frequency cepstrum coefficient makes the recognition rate of 100% when codebook-size of vector quantization is 16 or 32.
出处 《微电子学与计算机》 CSCD 北大核心 2014年第9期88-91,共4页 Microelectronics & Computer
基金 广西自然科学基金(2012GXNSFAA053221) 国家自然科学基金(61363005)
关键词 说话人识别 加权Mel频率倒谱系数 混合参数 矢量量化 speaker recognition weighted Mel frequency cepstrum coefficient mixed parameters vector quantization
  • 相关文献

参考文献5

二级参考文献39

  • 1王吉林.基于VQ的说话人识别系统的实现[J].天津职业大学学报,2004,13(6):39-42. 被引量:3
  • 2王永琦,邓琛,杨洋.语音增强用于抗噪声的汉语说话人识别[J].微电子学与计算机,2006,23(2):166-168. 被引量:4
  • 3杨毅,杨宇,余达太.语音增强及其消噪能力研究[J].微电子学与计算机,2006,23(7):202-203. 被引量:5
  • 4Nordholm S, Siow Yong Low. Speech signal extraction utilizing PCA- ICA algorithm with a non - uniform spacing microphone array[ C]//Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing. France: Toulouse, 2006 : 965.
  • 5Tsuneo N. Feature extraction for speech recognition based on ohogonal acoustic-feature panes and LDA[ C]//Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing. USA: Phoenix, AZ, 1999:421-424.
  • 6[1]Tomas F.Quatieri Discrete-Time Speech Signal Processing:Principles and Practice[M].北京:电子工业出版社,2004.
  • 7Chang Hyun Park,Kwee Bo Sim.Emotion recognition and acoustic analysis from speech signal[J].Proceedings of the International Joint Conference on Neural Networks,2003,4
  • 8Jun SATO,Shigeo Morishima.Emotion modeling in speech production using emotion space[J].IEEE International Workshop on Robot and Human Communication,1996:472~477
  • 9Hozjan V,Kacic Z.Context-independent multilingual emotion recognition from speech signals[J].International Journal of Speech Technology,2003,6(3):311~320
  • 10李宏言,盛利元,陈妮.基于矢量量化和查找表的改进DTW语音识别方法[J].计算机工程与设计,2007,28(19):4702-4704. 被引量:3

共引文献75

同被引文献96

引证文献14

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部