期刊文献+

基于Fang算法的TDOA室内定位技术 被引量:12

TDOA indoor location technology based on Fang algorithm
在线阅读 下载PDF
导出
摘要 传统基于全球定位系统(GPS)的定位技术应用,已在室外环境下为人们提供了许多便利。随着近年来人们生活水平的不断提高,大众对定位的诉求已不仅限于室外,在智慧商场、企业人员智能管理、校园智能管理等场景,要求对室内用户进行定位监测,而传统的GPS定位精确度有限,在室内已无法应用。目前室内定位常用的技术有红外线、蓝牙、Wi-Fi以及基于室内移动网路的无线定位等,无线定位则是其中的热点。本文介绍了一种基于室内分布式基站,运用Fang算法实现到达时间差(TDOA)定位的技术研究,并对其定位精确度进行了探索。 The traditional positioning system based on Global Positioning System(GPS)has provided a lot of convenience for people in the outdoor environment.With the continuous improvement of people’s living standards in recent years,the indoor location is more and more popular in intelligent shopping malls and intelligent campus.The traditional GPS location accuracy is limited,so it cannot be used indoor.At present,indoor location technology mainly includes infrared,Bluetooth,Wi-Fi and wireless location which relates to indoor mobile network.Among them,wireless location technology is a research hotspot.A research of indoor Time Difference Of Arrival(TDOA)location technology based on Fang algorithm is introduced,and its location accuracy is analyzed.
作者 陈思翰 CHEN Sihan(Guangdong Co.,Ltd,China Mobile Group,Guangzhou Guangdong 510000,China)
出处 《太赫兹科学与电子信息学报》 2017年第5期752-755,共4页 Journal of Terahertz Science and Electronic Information Technology
关键词 到达时间差(TDOA) Fang算法 室内定位 无线定位 Time Difference Of Arrival Fang algorithm indoor location wireless location
  • 相关文献

参考文献4

二级参考文献28

  • 1徐宝昌,陈哲,赵龙.一种改进的最小二乘景像匹配算法[J].北京航空航天大学学报,2005,31(8):848-852. 被引量:11
  • 2张玲,郭磊民,何伟,陈丽敏.一种基于最大类间方差和区域生长的图像分割法[J].信息与电子工程,2005,3(2):91-93. 被引量:27
  • 3简剑峰,尹忠海,周利华,王任享.基于直方图不变矩的遥感影像目标匹配方法[J].西安电子科技大学学报,2006,33(4):584-587. 被引量:6
  • 4彭梦,蔡自兴.基于直线段匹配的移动机器人的障碍物检测[J].电子技术应用,2007,33(3):66-68. 被引量:2
  • 5Pratt W K. Correlation techniques of image registration[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, 10(3): 353-358
  • 6Chen H M, Varshney P K, Arora M K. Performance of mutual information similarity measure for registration of multitemporal remote sensing images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(11): 2445- 2454
  • 7Zitova B, Flusser J. Image registration methods: a survey [J]. Image and Vision Computing, 2003, 21 ( ) : 977-1000
  • 8Kweon J J, Kang D K, Kim S D. A stereo matching algorithm using line segment features [C ]//Proceedings of the 4th IEEE Region 10 International Conference, Bombay, 1989:589-592
  • 9Ho W P, Yip R K K. A dynamic programming approach for stereo line matching with structural information [C] // Proceedings of the 13th International Conference on Pattern Recognition, Vienna, 1996:791-794
  • 10David G Lowe.Distinctive image features from Scale-invariant keypoints[J].International Journale of Computer Vision,2004,60(2):91-110.

共引文献49

同被引文献108

引证文献12

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部