摘要
讨论微分方程(φ(y′))′+g(t)f(t,y)=0在非线性边值条件y(0)-B0(y′(0))=y(1)+B1(y′(1))=0下的多重正解存在性问题.其中,g可允许在t=0和t=1时有奇性.利用Leggett-Williams不动点定理,证明方程有3个正解.进一步应用该不动点定理,可得到更多甚至无穷多个正解.
The existence of multiple positive solutions of differential equation(φ(y′))′+g(t)f(t,y)=0 under nonlinear boundary value conditiony(0)-B_0(y′(0))=y(1)+B_1(y′(1))=0 is studied, whereg is allowed to be singular at the end points of (0,1). The authors prove with the use of Leggett-Williams fixed-point theorem that the problem has at least three positive solutions. By further using the theorem, they show that more, even infinitely many positive solutions may be obtained.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2004年第1期1-5,共5页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:19971036
10371050).