期刊文献+

铵离子传感器的建模与在线校正研究 被引量:1

The Ammonium ISE Modeling and Online Calibration
在线阅读 下载PDF
导出
摘要 离子传感器是环境水质监测的关键技术之一。由于传感器制备技术的局限性以及应用环境的复杂性,严重影响了传感器的测量精度以及可靠性,难以用于在线检测。为了给水质在线检测提供有效的分析手段,以铵离子传感器为背景,在深入研究传感器响应特性后,根据实验数据,使用支持向量机回归建立传感器响应的离线模型;进一步使用在线支持向量机回归建立传感器的漂移校正模型。实验结果表明:建立的模型能较好地拟合响应过程曲线,有效地补偿了传感器的漂移。 Ion selectivity sensors( ISEs) are one of the key technologies in environment and water quality monitoring. Due to the limitations of the sensor's fabrication technology and the complexity of the application environment,it is very difficult to use ISEs for online monitoring on water environment. In order to provide an effective analysis method for the online measurement of water quality,the response characteristics of ammonium ISE is investigated,and SVR( support vector machine) is introduced to model ammonium ISE off-line. Furthermore,the drift calibration model of ammonium ISE is built by using online SVR. The experimental results show that the approach can fit the response curve of ammonium ISE accurately and compensate the sensor drift effectively.
作者 董加宝 陈锋
出处 《仪表技术》 2015年第8期47-51,共5页 Instrumentation Technology
关键词 离子传感器 支持向量机 在线支持向量机 传感器漂移 校正 ion selectivity electrode(ISE) support vector regression(SVR) online support vector regression sensor drift calibration
  • 相关文献

参考文献7

二级参考文献85

  • 1赵鸿,柴路,王浩,刘书声.互信息在时间序列分析中的应用[J].应用科学学报,1996,14(1):48-52. 被引量:11
  • 2孙德敏 张利 薛美盛.设施农业中营养液成分的在线检测与估计技术[C].Proc of IEEE WCICA 2000,June 2000,Hefei,3,.2155~2157.
  • 3孙德敏 张利.营养液电导的在线测量新方法[J].上海农业学报,1998,14:51-56.
  • 4Philip J Smethurst. Soil solution and other soil analyses as indicators of nutrient supply: a review [J]. Forest Ecology and Management. 2000,138 : 397-411.
  • 5Vamvakaki Maria, Chaniotakis, Nikolas A. Solid-contact ion-selective electrode with stable internal electrode Analytica [J]. Chimica Acta Volume, 1996,320 ( 1 ) : 53-61.
  • 6Buehler M G, Kounaves S P, Martin D P, et al.Designing a water-quality monitor with ion selective electrodes [ J ]. Aerospace Conference, 2001, IEEE Proceedings, Volume : 1, 2001 : 331 - 337.
  • 7K.S.Narendra,K.Parthasarathy.Identificationand Control of dynamical systems using neural networks[J].IEEE Trans.on Neural Networks,1990,1(1):4-27.
  • 8Ku C C,Lee K Y. Diagonal recurrent neural network for dynamic systems control [J].IEEE Trans on NN 1995,6(1):144-155.
  • 9L.ljiung,T.Soderstrom.Theory and practice of recursive identification[M].London:MIT Press,1983.
  • 10Vapnik V.The Nature of Statistical Learning Theory.Springer,1995

共引文献128

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部