期刊文献+

K型局部连接神经网络 被引量:1

K-type Local Connection Neural Network
在线阅读 下载PDF
导出
摘要 提出了一种新型局部连接网络———K型局部连接网络。首先给出所提网络的结构与算法,然后对所提网络隐含层激活函数———K型函数的性质,以及网络的性能进行了理论上的分析。最后将K型网络应用到函数逼近以及建模上,通过与其他局部连接网络的性能对比验证K型网络所具有的优越性。 A new type of local connection neural network - K-type local connection neural network (shorted by KLCNN) is proposed in this paper. First the structure and algorithm of the proposed network is given. Then the K-type active function in the implication layer of KLCNN, and its properties are analyzed theoretically. The KLCNN is used in the function approximation and modeling. Compared with other local connection neural networks, K neural network is proved to have more advantages than others.
作者 丛爽 郑毅松
出处 《计算机应用》 CSCD 北大核心 2004年第2期44-46,共3页 journal of Computer Applications
基金 安徽省自然科学基金资助项目 (0 3 0 42 3 0 1 )
关键词 局部网络 K型网络 系统建模 函数逼近 local neural network K neural network system modeling function approximation
  • 相关文献

参考文献2

二级参考文献8

  • 1[1]H Demuth,M Beale. Neural Network Toolbox User's Guide[M].The Math Works Inc, 1997.7
  • 2[2]P D Wasserman.advanced Methods in Neural Computing[M].New York:Van Norstrand Reinhold,1993
  • 3[3]J-S Roger Jang,C-T Sun.Functional Equivalence between radial basis fuction networks and fuzzy inference system[J].IEEE Trans.on Neural Networks, 1993 ;4( 1 ): 156-159
  • 4[1]Albus J S.Data Storage in the Cerebellar Model Articulation Controller (CMAC).Transaction of ASME J. Dynam. Syst. Meas. Control, 1975,97:228-233
  • 5[2]Pham D T,Sukkar M F. Supervised Adaptive Resonance Theory Nerual Network for Modelling Dynamic System. IEEE International Conference on Intelligent Systems for the 21 st Century,Canada, 1995-10,3:2500-2505
  • 6[3]Wasserman P D.Advanced Methods in Neural Computing. New York:Van Norstrand Reinhold, 1993
  • 7丛爽.几种模糊神经网络系统关系的对比研究[J].信息与控制,2001,30(6):486-491. 被引量:28
  • 8丛爽.径向基函数网络的功能分析与应用的研究[J].计算机工程与应用,2002,38(3):85-87. 被引量:57

共引文献65

同被引文献17

  • 1Strogatz S H. Exploring complex networks. Nature, 2001, 410(6825): 268-276.
  • 2Xia Y, Tse C K, Lau F, et al. Analysis of telephone network traffic based on a complex user network. Physica A: Statistical Mechanics and Its Applications, 2006, 368(2): 583-594.
  • 3Small M, Tse C K, Walker D M.Super-spreaders and the rate of transmission of the SARS virus. Physica D: Nonlinear Phenomena, 2006, 215(2): 146-158.
  • 4Pagani G A, Aiello M. Power grid complex network evolutions for the smart grid. Physica A: Statistical Mechanics and Its Applications, 2014, 396: 248-266.
  • 5Das H, Panda G S, Muduli B, et al. The complex network analysis of power grid: A case study of the west bengal power network. Intelligent Computing, Networking, and Informatics. Springer India, 2014, 17-29.
  • 6Tan H, Peng M, Tse C K, et al. Global similarity tests of physical designs of circuits: A complex network approach. Applied Mathematics and Computation, 2014, 240: 96-103.
  • 7Xu Y, Gurfinkel A J, Rikvold P A. Exploring complex networks. Architecture of the Florida Power Grid as a Complex Network, 2014.
  • 8Bazaraa M S, Sherali H D, Shetty C M. Nonlinear programming: Theory and Algorithms. John Wiley & Sons, 2014.
  • 9Kezunovic M. Smart fault location for smart grids. IEEE Transactions on Grid, 2011, 2(1): 11-22.
  • 10Chen Y, Yang JS. Topology identification and parameter estimation of complex networks with uncertain parameters. Proceedings of the 9th International Symposium on Linear Drives for Industry Applications, 2014, 3: 379-385.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部