期刊文献+

Identification of Quantitative Trait Loci for Anthesis-Silking Interval and Yield Components Under Drought Stress in Maize 被引量:13

玉米雌雄开花间隔天数、结穗率与产量的数量性状位点(QTL)分析(英文)
在线阅读 下载PDF
导出
摘要 A genetic linkage map with 89 SSR marker loci was constructed based on a maize (Zea mays L.) population consisting of 184 F-2 individuals from the cross, Huangzao 4 X Ye 107. The 184 F-3 families were evaluated in the field under well-watered and drought-stressed regimes in Shanxi Province of China. The objectives of the study were to identify genetic segments responsible for the expression of anthesis-silking interval (ASI), ear setting and grain yield, and to examine if the quantitative trait loci (QTLs) for ASI or yield components can be used in marker-assisted selection (MAS) to improve grain yield under drought conditions. Results showed that under well-watered and drought-stressed regimes, three and two QTLs involved in the expression of ASI were detected on chromosomes 1, 2 and 3, and 2 and 5, respectively. Under well-watered regime, two QTLs for ear setting were detected on chromosomes 3 and 6, explaining about 19.9% of the phenotypic variance, and displayed additive and partial dominant effects, respectively. Under drought-stressed condition, four QTLs for ear setting were detected on chromosomes 3, 7 and 10, which were responsible for interpreting 60.4% of the phenotypic variance, and showed dominant or partial dominant effects. Under well-watered condition, four QTLs controlling grain yield were identified on chromosomes 3, 6 and 7, while five QTLs were identified under drought stress on chromosomes 1, 2, 4 and 8. The gene action was of additive or partial dominant effects, and each QTL could explain 7.3% to 22.0% of the phenotypic variance, respectively. Under drought conditions, ASI and ear setting percentage were highly correlated with grain yield, which can be used as secondary traits for grain yield selection. Based on linked markers detected and gene action analyzed, an MAS strategy for yield improvement under drought condition could be established, which consists of QTLs contributing to decreased ASI and to increased ear setting and grain yield, respectively. 采用SSR标记连锁图谱和复合区间作图法在山西灌溉和干旱胁迫条件下,对玉米(Zea mays L.)自交系黄早四×掖107组合的F_3群体雌雄开花间隔天数(ASI)、结穗率和籽粒产量进行了数量性状位点(QTL)定位及基因效应分析。结果表明,在两种水分处理下,ASI、结穗率与籽粒产量的相关性均达到显著水平(P<0.05)。在灌溉和干旱胁迫卜,分别检测到3个和2个控制ASI的QTL,位于第1、2、3和第2、5染色体上。在灌溉条件下,在第3和第6染色体上各检测到1个控制结穗率的QTL,基因作用方式呈加性或部分显性,可解释19.9%的表型变异;在干旱条件下,在第3、7、10染色体上共检测到4个控制结穗率的QTL,基因作用方式为显性或部分显性,可解释60.4%的表型变异。在灌溉和干旱胁迫下,控制产量的QTL分别定位在第3、6、7和第1、2、4、8染色体上,基因作用方式均以加性或部分显性为主,可解释的表型变异为7.3%~22.0%。在干旱条件下,借助连锁分子标记和基因效应分析,可构建包含ASI、结穗率和产量QTL的选择指数,用于分子标记辅助育种。
出处 《Acta Botanica Sinica》 CSCD 2003年第7期852-857,共6页 Acta Botanica Sinica(植物学报:英文版)
基金 国家自然科学基金(39900089) 亚洲玉米生物技术协作网~~
关键词 Zea mays drought stress anthesis-silking interval ear setting grain yield quantitative trait loci (QTLs) 雌雄开花间隔天数 结穗率 产量 数量性状位点 玉米 干旱胁迫
  • 相关文献

参考文献15

  • 1Blum A. 1988. Plant Breeding forStress Environments. Florida,USA: CRC Press.
  • 2Bolanos J, Edmeades G O. 1993. Eight cycles of selection for drought tolerance inlowland tropical maize. Ⅱ. Responses in reproductive behavior. Field Crop Res,31:253-268.
  • 3Bolanos J, Edmeades G O. 1996. The importance of the anthesis-silking interval inbreeding for drought tolerance in tropical maize. Field Crop Res, 48:65-80.
  • 4Edmeades G O, Bolanos J, Chapman S C, Lafitte H R, Banziger M. 1999. Selectionimproves drought tolerance in tropical maize populations. Ⅱ. Direct and correlatedresponses among secondary traits. Crop Sci, 39:1315-1324.
  • 5Grant R F, Jackson B S, Kiniry J R, Arkin G F. 1989. Water deficit timing effectson yield components in maize. Agron J,81:61-65.
  • 6Paterson A H, Lander E S, Hewitt J D, Peterson S, Lincoln S E,Tanksley S D. 1988.Resolution of quantitative traits into Mendelian factors by using a complete linkage mapof restriction fragment length polymorphisms. Nature, 335:721-726.
  • 7Ribaut J M, Jiang C, Gonzalez-de-leon D, Edmeades G O,Hosington D. 1997.Identification of quantitative trait loci under drought conditions in tropical maize. 2,Yield components and marker-assisted selection strategies. Theor Appl Genet, 94:887-896.
  • 8Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W.1984. Ribosomal DNAspacer length polymorphisms in barley: mendelian inheritance, chromosomal location andpopulation dynamics. Proc Natl Acad Sci USA, 81:8014-8018.
  • 9Schon C C, Melchinger A E, Boppenmaier J, Brunklaus-Jung E,Herrmann R G. 1994. RFLPmapping in maize: quantitative trait loci affecting testcross performance of eliteEuropean flint lines. Crop Sci, 34:378-389.
  • 10Stuber C W, Edwards M D, Wendel J F. 1987. Molecular-markerfacilitatedinvestigations of quantitative trait loci in maize.Ⅱ. Factors influencing yield and itscomponent traits. Crop Sci, 27:639-648.

同被引文献192

引证文献13

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部