摘要
草地贪夜蛾Spodoptera frugiperda(J.E. Smith)对非洲和南亚国家的入侵已对全球粮食安全造成重大影响,该虫2018年年底已在缅甸形成虫源基地,并零星进入中国云南西南部地区。本文利用历史数据分析了缅甸和华南地区春、夏两季(3-8月)925 hPa夜间平均风温场,并模拟预测了缅甸地区草地贪夜蛾在此期间进入中国的迁飞轨迹以及主要降落和波及的地区。结果表明:3-4月盛行的微弱西风不利于远距离迁移,但成虫的自主飞行可形成对云南和广西局部地区的近距离入侵;进入5月份后,随着西南夏季风的加强,云南和广西全境成为缅甸虫源的主要迁入地,并可能波及贵州、广东、海南和湖南等省。因此,4月份之前要重点监控云南和广西地区草地贪夜蛾的发生与为害,此后,应将监控区域扩大至中国中南部地区的各个省份。
The invasion of Spodoptera frugiperda (J. E. Smith) into African and South Asian countries has imposed a serious impact on global food security. By the end of 2018, the insect has formed a source base in Myanmar and sporadically entered southwestern Yunnan of China. In this study, the mean night wind and temperature fields of 925 hPa in spring and summer(March-August) in Myanmar and South China were analyzed by using historical data. The migration trajectory of the pest in Myanmar and its main landing and spreading areas were also simulated and predicted. The results showed that, because the weak westerly wind prevailed in Myanmar from March to April, the autonomous flight of adults could form a close-range invasion into local areas of Yunnan and Guangxi. After May, with the intensification of the southwest summer monsoon, Yunnan and Guangxi became the main places of migration of Myanmar′s insect source, and even reached to Guizhou, Guangdong, Hainan and Hunan provinces. Therefore, the occurrence and damage of the pest in Yunnan and Guangxi should be monitored before April. After that, the monitoring area should be extended to all provinces in the south-central region of China.
作者
吴秋琳
姜玉英
吴孔明
WU Qiulin;JIANG Yuying;WU Kongming(State Key Laboratory for Biology of Plant Diseases and Insect Pests,Institute of Plant Protection,Chinese Academy of Agricultural Sciences,Beijing 100193,China;National Agro-Tech Extension and Service Center,Beijing 100125,China)
出处
《植物保护》
CAS
CSCD
北大核心
2019年第2期1-6,18,共7页
Plant Protection
基金
国家自然科学基金重大仪器项目(31727901)
关键词
草地贪夜蛾
缅甸种群
风温场
迁飞轨迹
监测预警
Spodoptera frugiperda
Myanmar population
wind and temperature fields
migration route
monitoring and forecasting