期刊文献+

多类顾客多服务台队列网络的高负荷极限定理 被引量:3

A Heavy Traffic Limit Theorem for a Queueing Network with Multiple Customer Typtes and Multiple Server Stations
原文传递
导出
摘要 多类顾客多服务台队列网络广泛地应用到计算机网络、通讯网络和交通网络 .由于系统的复杂性 ,其数量指标的精确解很难求出 .为了寻求逼近解 ,本文用概率测度弱收敛理论对进行了研究 ,在高负荷的条件下 ,我们获得了网输入过程、闲时过程和负荷过程的极限定理 . Queueing network with multiple customer typtes and multiple server stations has been used to computer and Communication and transportation networks widely. accurate solution of quantity index is difficulty to evatuate for complex of systems. in order to seek approximation solution. We used theory of weak convergence of probability measures.under heavy traffic assumptions we obtain limit theorems for the netput process?idle time process and workload process.
作者 刘建民
机构地区 长安大学基础部
出处 《数学的实践与认识》 CSCD 北大核心 2004年第1期108-112,共5页 Mathematics in Practice and Theory
关键词 逼近解 极限定理 网络队列 服务强度 协方差 布朗运动 queueing network heavy traffic netput process idle time process workload process
  • 相关文献

参考文献10

  • 1[1]Reiman M I. Open queueing networks in heavy traffic[J]. Math Oper Res, 1984, 9: 441-458.
  • 2[2]Reimen M I. A multiclass feadback queue in heavy traffic[J]. Adv in Appl Probab, 1988, 20: 179-207.
  • 3[3]William P Peteron. A heavy traffic limit theorem for networks of queues with multiple customer types[J]. Math Oper Res, 1991, 16: 90-118.
  • 4[4]Dai J G, Thomas G Kurtz. A multiclass station with markuvian feedback in heavy traffic[J]. Math Oper Res, 1995, 20: 721-742.
  • 5[5]Dai J G, Dai. A heavy traffic limit theorem for a class of open queueing networks with finite buffers[J]. Queueing Systems, 1999, 32: 5-40.
  • 6[6]Zhang H. Strong approximations for irreducible closed queueing networks[J]. Adv Appl Proba, 1997, 29: 498-522.
  • 7[7]Chen H, Zhang H. Diffusion approximations for kumar seidman network under a priority service discipline[J]. Operations Research Letters, 1998, 23: 171-181.
  • 8[8]Peterson W P, Wein L M. Heavy traffic analysis of a transportation network model[J]. J Appl Prob, 1996, 33: 870-885.
  • 9[9]Billingsley P. Convergence of Probability Measures[M]. John Wiley and Sons, New York, 1968.
  • 10[10]Whitt W. Weak convergence theorems for priority queues: preemptive-resume discipline[J]. J Appl Probab, 1971, 8: 74-94.

同被引文献19

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部